E. Todesco DIPOLES FOR HIGH ENERGY LHC E. Todesco CERN, Geneva Switzerland Acknowledgements: B. Bordini, L. Bottura, G. De Rijk, L. Evans, P. Fessia, J.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

HTS Wires for Energy and Magnet Technologies Superconductivity and the electricity supply industries November 27th, 2003.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
0 - 0.
Addition Facts
TQM05 (coil #36) Test Summary 1. TQ coil #36 in a mirror structure Coil #36 tested with a radiation resistant impregnation material 0.7-mm diameter Nb.
May 9, 2012D. R. Dietderich, LARP CM-18 Cable Fabrication Plans and Experience D.R. Dietderich Lawrence Berkeley National Laboratory bnl - fnal- lbnl -
Results Conclusion Methods Samples Characterization of large size co-extruded Al-Ni stabilized Nb-Ti superconducting cable Objectives Background Stefanie.
WP10.2 – status Reported by L. Bottura and C. Senatore Meeting at CERN, February 2 nd, 2014.
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
Superconducting Magnet Program S. Gourlay CERN March 11-12, Lawrence Berkeley National Laboratory IR Quad R&D Program LHC IR Upgrade Stephen A.
Chapter 5 Test Review Sections 5-1 through 5-4.
2 nd Joint HiLumi LHC – LARP Annual Meeting INFN Frascati – November 14 th to 16 th 2012 LBNL: Helene Felice – Tiina Salmi – Ray Hafalia – Maxim Martchevsky.
LM dipole status & plans – Fred Nobrega 1 Long Quadrupole (LQ) Workshop, February 7-9, 2007 BNL - FNAL - LBNL - SLAC Long Dipole Mirror (LM) Status and.
Addition 1’s to 20.
25 seconds left…...
11 = This is the fact family. You say: 8+3=11 and 3+8=11
Week 1.
We will resume in: 25 Minutes.
September 2007 FP7-IA HFM JRA proposal G. de Rijk (CERN)1 FP7-IA HFM JRA proposal   The proposal is under discussion: we welcome input from potential.
11 September 2007 FP7-IA HFM JRA proposal G. de Rijk (CERN)1 FP7-IA HFM JRA proposal   Outline Motivation General description Proposed Work Packages.
Optimisation of Roebel cable for HTS accelerator magnets
Aug 29, 2006S. Kahn T HTS Solenoid1 A Proposal for a 50 T HTS Solenoid Steve Kahn Muons Inc. August 29, 2006.
Outline: Goals for the cable development at CERN. Main parameters of the cable. Cable development work for a cable width of 15.1 mm and for a cable width.
Possible HTS wire implementation Amalia Ballarino Care HHH Working Meeting LHC beam-beam effects and beam-beam interaction CERN, 28 th August 2008.
HL-LHC: UPDATE ON MAGNETS
EuCARD2 Magnet Status and action plan
E. Todesco PROPOSAL OF APERTURE FOR THE INNER TRIPLET E. Todesco CERN, Geneva Switzerland With relevant inputs from colleagues F. Cerutti, S. Fartoukh,
FCC Week 2015Design Options for 16 T LTS Dipoles – G. Sabbi 1 Overview of Magnet Design Options for LTS Dipoles in the 16 T Range GianLuca Sabbi, LBNL.
Superconducting R&D – Now Strand and Cable R&D FERMILAB Magnet Systems Department – Now SC Materials Department (TD) HTS Insert Coil Test in External Solenoid.
Aug 9, 2008S. Kahn -- HCC Magnet Plans1 HCC Magnet Future Plans Steve Kahn Aug 9, 2008 NFMCC Friday Meeting.
Towards Nb 3 Sn accelerator magnets, challenges & solutions, history & forecast Shlomo Caspi Superconducting Magnet Group Lawrence Berkeley National Laboratory.
Development of the EuCARD Nb 3 Sn Dipole Magnet FRESCA2 P. Ferracin, M. Devaux, M. Durante, P. Fazilleau, P. Fessia, P. Manil, A. Milanese, J. E. Munoz.
E. Todesco PROTECTION IN MAGNET DESIGN E. Todesco CERN, Geneva Switzerland With help from B. Auchmann, L. Bottura, H. Felice, J. Fleiter, T. Salmi, M.
G.A.Kirby 4th Nov.08 High Field Magnet Fresca 2 Introduction Existing strand designs, PIT and OST’s RRP are being used in the conceptual designs for two.
R. Bonomi R. Kleindienst J. Munilla Lopez M. Chaibi E. Rogez CERN Accelerator School, Erice 2013 CASE STUDY 1: Group 1C Nb 3 Sn Quadrupole Magnet.
CERN Accelerator School Superconductivity for Accelerators Case study 1 Paolo Ferracin ( ) European Organization for Nuclear Research.
CERN Accelerator School Superconductivity for Accelerators Case study introduction Paolo Ferracin CERN, Geneva Claire Antoine
GROUP C – Case study no.4 Dr. Nadezda BAGRETS (Karlsruhe Institute of Technology) Dr. Andrea CORNACCHINI (CERN EN Dept.) Mr. Miguel FERNANDES (CERN BE.
Harold G. Kirk Brookhaven National Laboratory High-Field Solenoids for a MC Final Cooling System AAC 2012 Austin, Texas June 11-15, 2012.
BNL High Field and HTS Magnet Program Ramesh Gupta BNL, NY USA H T.
CERN Accelerator School Superconductivity for Accelerators Case study 3 Paolo Ferracin ( ) European Organization for Nuclear Research.
16 T Dipole Design Options: Input Parameters and Evaluation Criteria F. Toral - CIEMAT CIEMAT-VC, Sept. 4th, 2015.
HI-LUMI-LARP, 18 Nov 2011: LB & GdR; HFM & HE-LHC High Field Magnet program and HE-LHC Luca Bottura & Gijs de Rijk CERN 1.
E. Todesco OUTPUT OF THE CABLE REVIEW E. Todesco and the QXF team CERN, Geneva Switzerland CERN, 10 th December 2014 QXF design review, CERN.
Outline: Strand R&D and strand procurement and inventory. Main parameters of the cable without a core. Results obtained during the cable development without.
E. Todesco, Milano Bicocca January-February 2016 Appendix C: A digression on costs and applications in superconductivity Ezio Todesco European Organization.
Next Steps in Magnet R&D Steve Gourlay LBNL EuCARD Workshop on a High Energy LHC Malta October 14, 2010.
E. Todesco INTERACTION REGION MAGNETS E. Todesco On behalf of the WP3 collaboration CERN, Geneva, Switzerland CERN, 27 th October 2015.
E. Todesco LAYOUT FOR INTERACTION REGIONS IN HI LUMI LHC E. Todesco CERN, Geneva Switzerland Acknowledgements: B. Dalena, M. Giovannozzi, R. De Maria,
HTS insert magnet design: Stack Cable Johnny Himbele, Arnaud Badel, Pascal Tixador 1.
Report from Session 2 Main Dipoles. P. McIntyre 2005 – 24T ss Tripler, a lot of Bi-2212, Je = 800 A/mm2 E. Todesco T, 80% ss 30% NbTi 55 %NbSn.
Long Quad (LQ) & High Gradient (HQ) Series Alexander Zlobin bnl - fnal- lbnl - slac US LHC Accelerator Research Program DOE LARP review Fermilab, June.
LARP Collaboration Meeting 15 Nov 1-3, 2010 A2C- Materials Working Group Arup Ghosh (coordinator), Emanuela Barzi, Dan Cheng, Dan Dietderich, Soren Prestemon,
CERN QXF Conductor Procurement and Cable R&D A.Ballarino, B. Bordini and L. Oberli CERN, TE-MSC-SCD LARP Meeting, Napa, 9 April 2013.
CERN, 11th November 2011 Hi-lumi meeting
Unit 9 Electromagnetic design Episode II
11 T cable development and procurement strategy at CERN
CERN Conductor and Cable Development for the 11T Dipole
DESIGN OPTIONS IN THE T RANGE
EuCARD2 WP 10.2 HTS Conductor
SEMI-ANALYTIC APPROACHES TO MAGNET DESIGN
HIGH LUMINOSITY LHC: MAGNETS
11T Dipole for the LHC Collimation upgrade
CERN Accelerator School Superconductivity for Accelerators Case study 2 Paolo Ferracin European Organization for Nuclear Research.
HIGH ENERGY LHC E. Todesco CERN, Geneva Switzerland
P.Fabbricatore & S.Farinon
HL LHC WP3 (magnets) TASK 2 ADVANCEMENT
PROPOSAL OF APERTURE FOR THE INNER TRIPLET
Presentation transcript:

E. Todesco DIPOLES FOR HIGH ENERGY LHC E. Todesco CERN, Geneva Switzerland Acknowledgements: B. Bordini, L. Bottura, G. De Rijk, L. Evans, P. Fessia, J. Fleiter, J. Nugteren, L. Rossi, F. Zimmermann CERN, 21 th February 2013 Snowmass at CERN

E. Todesco 20 T magnets for HE-LHC - 2 CONTENTS Recall of Malta design Where are we with current density requirements? Possible simplifications and associated costs Optimization of cell length

E. Todesco 20 T magnets for HE-LHC - 3 RECALL OF DESIGN Field ~ current density j  coil width w Current density is the main choice of the magnet designer Pioneering work of McIntyre With 380 A/mm 2, one makes ~ 2.5 T each 10 mm of coil, so we need 80 mm Most accelerator magnets not far from this j value Low current density brings two advantages More margin for protection Lower stress Other main choice: have a 20% margin on the loadline So we must have a coil reaching 25 T at short sample! Field versus coil width Fresca2 McIntyre

E. Todesco 20 T magnets for HE-LHC - 4 RECALL OF DESIGN Malta layout highly optimized to minimize conductor cost Hypothesis: cost Nb-Ti is one, Nb 3 Sn is 4 times, HTS is 16 times Use Nb-Ti up to 8 T, Nb 3 Sn up to 13 T, HTS up to 20 T We also use Nb 3 Sn with half current density to have 2 more Tesla and reach 15 T, saving on HTS (see next section) Lower cost, at the price of complexity 20 T hybrid magnet: the Malta design [E. Todesco, L. Rossi]One quarter of a coil

E. Todesco 20 T magnets for HE-LHC - 5 CONTENTS Recall of Malta design Where are we with the current density requirements? Possible simplifications and associated costs Optimization of cell length

E. Todesco 20 T magnets for HE-LHC - 6 WHERE ARE WE WITH NB 3 Sn? Project is in mid term future so some optimism is allowed to account for progress in technology Nb 3 Sn performance has greatly improved (doubled in ten years), so no space is assumed for further optimization An historical view on the improvement of Nb-Ti and Nb 3 Sn performance [L. Bottura, ASC 2012]

E. Todesco 20 T magnets for HE-LHC - 7 WHERE ARE WE WITH NB 3 Sn? Hypothesis Copper to superconductor of 1.1 (as in recent LARP and 11 T magnets) Insulation, voids (impregnation) bring dilution factor to 0.33 So we aim at 13/0.8=16.25 T we want 380*3/0.8=1400 A/mm 2 15/0.8=18.75 T we want 190*3/0.8=700 A/mm 2 Today best conductor (2500 A/mm 2 at 12 T, 4.2 K) provides these values, with 10% cable degradation [B. Bordini, based on PIT and RRP data] But this is extrapolation of data at lower fields, so measurements in the T range would be warmly welcome

E. Todesco 20 T magnets for HE-LHC - 8 WHERE ARE WE WITH NB 3 Sn? Protection For protection, we are at a level of energy density in the coil of about 0.2 J/mm 3 – this is ~50% more what we have in Nb 3 Sn magnets More copper could be needed, so further increase of current density in the superconductor could be useful Energy density in the coil versus current density in the coil, with protection time margin [E. Todesco, ASC 2012]

E. Todesco 20 T magnets for HE-LHC - 9 WHERE ARE WE WITH HTS? Two options: YBCO and Bi-2212 YBCO Tape  Very good current density in parallel direction but strong anisotropy  Stress resistant Bi-2212 Cable No anisotropy No stress resistant (reinforemcent in strand needed)  Several activities ongoing in different labs [G. De Rijk, S. Prestemon, this workshop], wide experience with solenoids

E. Todesco 20 T magnets for HE-LHC - 10 WHERE ARE WE WITH HTS? Both YBCO and Bi-2122 are ~400 A/mm 2, vs 480 A/mm 2 required YBCO: Preliminary analysis of field direction in Malta coil: in HTS coil angle between field and conductor is up to 30 , so I think we have to forget about YBCO parallel performance Engineering current density of YBCO and of Bi-2212 [P. Lee] HTS target Large improvement w.r.t. Malta workshop 2.5 years ago ! (we had ~200 A/mm 2 )

E. Todesco 20 T magnets for HE-LHC - 11 CONTENTS Recall of Malta design Where are we with HTS requirements? Possible simplifications and associated costs Optimization of cell length

E. Todesco 20 T magnets for HE-LHC - 12 MAKING IT SIMPLER? Malta design (slightly simplified) Guideline: follow HD2 and Fresca2 mechanical structure, i.e. no supporting elements in the coil – preliminary analysis shows stress<200 MPa One double pancake of HTS Revised Malta design for 20 T magnet, one quarter of coil shown

E. Todesco 20 T magnets for HE-LHC - 13 MAKING IT SIMPLER? Malta design (slightly simplified) One double pancake of HTS One double + one single pancake of low j Nb 3 Sn Revised Malta design for 20 T magnet, one quarter of coil shown

E. Todesco 20 T magnets for HE-LHC - 14 MAKING IT SIMPLER? Malta design (slightly simplified) One double pancake of HTS One double + one single pancake of low j Nb 3 Sn One double + one single pancake of Nb 3 Sn Revised Malta design for 20 T magnet, one quarter of coil shown

E. Todesco 20 T magnets for HE-LHC - 15 MAKING IT SIMPLER? Malta design (slightly simplified) One double pancake of HTS One double + one single pancake of low j Nb 3 Sn One double + one single pancake of Nb 3 Sn One double pancake of Nb-Ti Six coils to be assembled per pole, four with flared ends, two flat Revised Malta design for 20 T magnet, one quarter of coil shown

E. Todesco 20 T magnets for HE-LHC - 16 MAKING IT SIMPLER? Malta design, without Nb-Ti One double pancake of HTS One double + one single pancake of low j Nb 3 Sn One double + one single pancake of Nb 3 Sn Five coils to be assembled per pole Cost: +15% Revised Malta design for 20 T magnet (no Nb-Ti), one quarter of coil shown

E. Todesco 20 T magnets for HE-LHC - 17 MAKING IT SIMPLER? Malta design without graded Nb 3 Sn One double pancake of HTS One double + one single pancake of Nb 3 Sn Three coils to be assembled per pole Cost: +50% ( 1.5 times the Malta design) Revised Malta design for 20 T magnet (no Nb 3 Sn grading, no Nb-Ti), one quarter of coil shown

E. Todesco 20 T magnets for HE-LHC - 18 THE 15 T CASE The 15 T case, without Nb-Ti I passed to 1 mm strand to avoid three layers – HD2-like layout One double pancake of Nb 3 Sn used at low j e = 190 A/mm 2 One double pancake of Nb 3 Sn, two coils to be assembled per pole Cost: 45% of Malta 20% more (i.e. 55% of Malta) if no Nb-Ti grading Snowmass design for 15 T magnet, one quarter of coil shown

E. Todesco 20 T magnets for HE-LHC - 19 BLOCK VERSUS COS THETA Block design advantages Fits the shape of the field allowing grading for very large coils Natural position of quench heaters (midplane and between double pancakes Pursuing studies on this design is important (Fresca2, HD2, HD3) Bologna city centre: block (left) vs cos theta (right)

E. Todesco 20 T magnets for HE-LHC - 20 CONTENTS Recall of Malta design Where are we with HTS requirements? Possible simplifications and associated costs Optimization of cell length

E. Todesco 20 T magnets for HE-LHC - 21 OPTIMIZAZION OF CELL LENGTH LHC has a semi-cell length (distance between quadrupoles) of L =50 m Main scaling Beta function  L Beam size  L so longer spacing requires larger aperture  Longer spacing requires less quadrupoles Integrated gradient Gl  1/ L so longer spacing requires lower integrated gradient Example HE-LHC needs 1600 T, 40 mm aperture so with Nb 3 Sn we need 3.5 m quads

E. Todesco 20 T magnets for HE-LHC - 22 OPTIMIZAZION OF CELL LENGTH If we get longer cell length, we will have less force needed and less quadrupoles but larger aperture Hypothesis: 20 m max length of dipoles Either 20 T fixed and larger energy, or energy fixed and lower field FIRST CASE: FIXED FIELD OF 20T Keeping a 20 T magnet, and making it larger we can gain TeV out of 16.5 TeV

E. Todesco 20 T magnets for HE-LHC - 23 OPTIMIZAZION OF CELL LENGTH If we get longer cell length, we will have less force needed and less quadrupoles but larger aperture Either 20 T fixed and larger energy, or energy fixed and lower field SECOND CASE: FIXED ENERGY OF 16.5 TeV Keeping a 16.5 TeV energy, we can lower the field of T

E. Todesco 20 T magnets for HE-LHC - 24 OPTIMIZAZION OF CELL LENGTH Whats the price? Rough estimate based on sector coil For a fixed energy, a 66 m long cell allows go to 45 mm aperture with 19 T, saving 20% of HTS (10% of conductor cost in the cross- section, 5% on global cost accouting for higher filling) Looks marginal – and longer cell does not help For a fixed field, 1 additional TeV costs ~10% Then it rapidly diverges

E. Todesco 20 T magnets for HE-LHC - 25 FURTHER DEVELOPMENTS Superconductors Push (and measure) performance of Nb 3 Sn in the range T We are at Malta design values, but improvement could considerably reduce costs Get a 20% more on j e in HTS, to reach 500 A/mm 2 at 25 T Today we are not so far ! Magnet technology Fresca2 and HD block designs are an essential step towards the 20 T dipoles Block design has the advantage of allowing a natural way of grading the material, and saving money Removable pole technology for Nb 3 Sn needed Splice technology to be widely studied Flared ends are still a problem today for block design

E. Todesco 20 T magnets for HE-LHC - 26 CONCLUSION Simplifications We presented successive simplification of Malta design, each one with price tag Seen from end to beginning, it can indicate a roadmap towards 20 T The Nb-Ti allows saving about 15% Without grading of Nb 3 Sn, price doubles Stopping at 15 T, with graded Nb 3 Sn price is 55% Optimizing cell length One could explore an option with longer cell length to have less quadrupoles are larger filling factor Saving is not significant in this phase of the project