9.2 Define General Angles and Use Radian Measure What are angles in standard position? What is radian measure?

Slides:



Advertisements
Similar presentations
1 Special Angle Values. 2 Directions A slide will appear showing a trig function with a special angle. Say the value aloud before the computer can answer.
Advertisements

4.1 Radian and Degree measure
Angles of Rotation and Radian Measure In the last section, we looked at angles that were acute. In this section, we will look at angles of rotation whose.
Warm Up Find the measure of the supplement for each given angle °2. 120° °4. 95° 30°60° 45° 85°
5.1 Angles and Degree Measures. Definitions An angle is formed by rotating one of two rays that share a fixed endpoint know as the vertex. The initial.
2.1 Angles and Their Measures
Objectives: Be able to draw an angle in standard position and find the positive and negative rotations. Be able to convert degrees into radians and radians.
Objectives: 1.Be able to draw an angle in standard position and find the positive and negative rotations. 2.Be able to convert degrees into radians and.
Angles and Arcs in the Unit Circle Radian and Degree Measure In this section, we will study the following topics: Terminology used to describe.
Drill Calculate:.
H.Melikian/12001 Recognize and use the vocabulary of angles. Use degree measure. Use radian measure. Convert between degrees and radians. Draw angles in.
Section 4.1 Angles and Radian Measure. The Vocabulary of Angles An angle is formed by two rays that have a common endpoint. One ray is called the initial.
Angles and Their Measure Section Angles Vertex Initial Side Terminal Side.
4.1 Radian and Degree Measure. Objective To use degree and radian measure.
TUC-1 Measurements of Angles “Things I’ve Got to Remember from the Last Two Years”
Chapter Radian and degree measurement. Objectives O Describe Angles O Use radian measure O Use degree measure and convert between and radian measure.
13.2 Angles and Angle Measure
Angles and their Measures
Radian and Degree Measure Objectives: Describe Angles Use Radian and Degree measures.
4-1.  Thinking about angles differently:  Rotating a ray to create an angle  Initial side - where we start  Terminal side - where we stop.
EXAMPLE 4 Solve a multi-step problem A softball field forms a sector with the dimensions shown. Find the length of the outfield fence and the area of the.
TRIGONOMETRY Trigonometry
Advanced Algebra II Advanced Algebra II Notes 10.2 continued Angles and Their Measure.
Math III Accelerated Chapter 13 Trigonometric Ratios and Functions 1.
Angles in Degree & Radian Measure w/Unit Circle
Trigonometry Day 1 ( Covers Topics in 4.1) 5 Notecards
Trigonometry The science of studying angle measure.
Introduction to Trigonometry Angles and Radians (MA3A2): Define an understand angles measured in degrees and radians.
Concept. Example 1 Draw an Angle in Standard Position A. Draw an angle with a measure of 210° in standard position. 210° = 180° + 30° Draw the terminal.
13.2 Angles of Rotation and Radian Measure
Chapter 4 Trigonometric Functions. Angles Trigonometry means measurement of triangles. In Trigonometry, an angle often represents a rotation about a point.
Radian and Degree Measure. Radian Measure A radian is the measure of a central angle that intercepts an arc length equal to the radius of the circle Radians.
Find all 6 trig ratios from the given information sinθ = 8/133. cotθ = 5   9 15.
Radian Measure That was easy
Radians and Angles. Angle-formed by rotating a ray about its endpoint (vertex) Initial Side Starting position Terminal Side Ending position Standard Position.
Unit 7: Angles and Angle Measures
Chapter 4 Trigonometric Functions Copyright © 2014, 2010, 2007 Pearson Education, Inc Angles and Radian Measure.
Ch 14 Trigonometry!!. Ch 14 Trigonometry!! 14.1 The unit circle Circumference Arc length Central angle In Geometry, our definition of an angle was the.
Vocabulary Origin & Quadrants Vertex Right, Acute, & Obtuse Complementary & Supplementary Central & Inscribed Angles Arc.
Angles and their Measures Essential question – What is the vocabulary we will need for trigonometry?
 Think back to geometry and write down everything you remember about angles.
EXAMPLE 1 Draw angles in standard position Draw an angle with the given measure in standard position. SOLUTION a. 240º a. Because 240º is 60º more than.
Holt McDougal Algebra Angles of Rotation Warm Up Find the measure of the supplement for each given angle. Think back to Geometry… °2. 120°
Introduction to Trigonometry Angles and Radians (MA3A2): Define an understand angles measured in degrees and radians.
4.2 Degrees and Radians Objectives: Convert degree measures of angles to radian measures Use angle measures to solve real-world problems.
Trigonometry Section 7.1 Find measures of angles and coterminal angle in degrees and radians Trigonometry means “triangle measurement”. There are two types.
13-2 ANGLES AND THE UNIT CIRCLE FIND ANGLES IN STANDARD POSITION BY USING COORDINATES OF POINTS ON THE UNIT CIRCLE.
Chapter 7: Trigonometric Functions Section 7.1: Measurement of Angles.
Pre-Calculus Honors Pre-Calculus 4.1: Radian and Degree Measure HW: p (14, 22, 32, 36, 42)
Warm Up Find the measure of the supplement for each given angle.
Bellwork.
Aim: How do we look at angles as rotation?
Quadrants: Quarters on a coordinate plane
Angle Measure In this case, R1 is called the initial side, and R2 is called the terminal side of the angle. If the rotation is counterclockwise, the angle.
Radian and Degree Measure
Radian Measure and Coterminal Angles
Trigonometric Definitions
17-1 Angles of Rotation and Radian Measure
Angles and Angle Measure
Angles and Their Measures
Angles and Radian Measure
Define General Angles and Radian Measure
13.2A General Angles Alg. II.
Angles and Their Measure
Warm-up: Determine the circumference of the following circles in terms of π. HW: p (5 – 10 , , 25, 27, 33 – 36 , 43 – 61 odd, 71, 73)
9.2 Angle and Radian Measure
13-2 Angles and Angle Measure
6.3 Angles and Radian Measure
Solve the right triangle.
Write the expression in simplest form.
Presentation transcript:

9.2 Define General Angles and Use Radian Measure What are angles in standard position? What is radian measure?

Angles in Standard Position In a coordinate plane, an angle can be formed by fixing one ray called the initial side and rotating the other ray called the terminal side, about the vertex. An angle is in standard position if its vertex is at the origin and its initial side lies on the positive x-axis. 0° 90° 180° 270° vertex The measure of an angle is positive if the rotation of its terminal side is counterclockwise and negative if the rotation is clockwise. The terminal side of an angle can make more than one complete rotation.

Draw an angle with the given measure in standard position. SOLUTION a. 240º a. Because 240º is 60º more than 180º, the terminal side is 60º counterclockwise past the negative x -axis.

Draw an angle with the given measure in standard position. SOLUTION b. 500º b.Because 500º is 140º more than 360º, the terminal side makes one whole revolution counterclockwise plus 140º more.

Draw an angle with the given measure in standard position. SOLUTION c. –50º c.Because –50º is negative, the terminal side is 50º clockwise from the positive x -axis.

Coterminal Angles Coterminal angles are angles whose terminal sides coincide. An angle coterminal with a given angle can be found by adding or subtracting multiples of 360° The angles 500° and 140° are coterminal because their terminal sides coincide.

Find one positive angle and one negative angle that are coterminal with ( a ) –45º SOLUTION a. –45º + 360º –45º – 360º There are many such angles, depending on what multiple of 360º is added or subtracted. = 315º = – 405º

Find one positive angle and one negative angle that are coterminal with ( b ) 395º. b. 395º – 360º 395º – 2(360º) = 35º = –325º

Draw an angle with the given measure in standard position. Then find one positive coterminal angle and one negative coterminal angle ° 65º + 360º 65º – 360º ° 230º + 360º 230º – 360º = 425º = –295º = 590º = –130º

3. 300° 300º + 360º 300º – 360º ° 740º – 2(360º) 740º – 3(360º) = 660º = –60º = 20º = –340º

Radian Measure

Converting Between Degrees and Radians

Degree and Radian Measures of Special Angles

a. 125º Convert ( a ) 125º to radians and ( b ) – radians to degrees. π 12 25π 36 = radians b. π 12 – π radians 180º π 12 – = radians () () = –15º ( π radians 180º ) = 125º

Convert the degree measure to radians or the radian measure to degrees ° 135º 3π 4 = radians ( π radians 180º ) = 135º

6. –50° – 5 π 18 = radians 5π 4 = 225º π radians 180º 5π 4 = radians () () ( π radians 180º ) = –50° 7. 5π 4 8. π 10 = 18º π radians 180º π 10 = radians () () π 10

Sectors of Circles

Arc Length and Area of a Sector

A softball field forms a sector with the dimensions shown. Find the length of the outfield fence and the area of the field. Softball SOLUTION STEP 1Convert the measure of the central angle to radians. 90º = 90º ( π radians 180º ) = π 2 radians STEP 2 Find the arc length and the area of the sector. π Arc length: s = r = 180 = 90π ≈ 283 feet θ 2 ( ) Area: A = r 2 θ = (180) 2 = 8100π ≈ 25,400 ft 2 π 2 ( )

The length of the outfield fence is about 283 feet. The area of the field is about 25,400 square feet. ANSWER π Arc length: s = r = 180 = 90π ≈ 283 feet θ 2 ( ) Area: A = r 2 θ = (180) 2 = 8100π ≈ 25,400 ft 2 π 2 ( )

9.2 Assignment Page 566, 3-37 odd