House Allocation and Kidney Exchange.

Slides:



Advertisements
Similar presentations
Mathematical Preliminaries
Advertisements

Copyright © Cengage Learning. All rights reserved.
1 Concurrency: Deadlock and Starvation Chapter 6.
Copyright © 2008 Pearson Addison-Wesley. All rights reserved. Chapter 16 Unemployment: Search and Efficiency Wages.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Supply and Demand The goal of this chapter is to explain how supply and demand really work. What determines the price of a good or service? How does the.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Exit a Customer Chapter 8. Exit a Customer 8-2 Objectives Perform exit summary process consisting of the following steps: Review service records Close.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Year 6 mental test 10 second questions
1 Term 2, 2004, Lecture 6, TransactionsMarian Ursu, Department of Computing, Goldsmiths College Transactions 3.
1 Almost stable matchings in the Roommates problem David Abraham Computer Science Department Carnegie-Mellon University, USA Péter Biró Department of Computer.
1 Discreteness and the Welfare Cost of Labour Supply Tax Distortions Keshab Bhattarai University of Hull and John Whalley Universities of Warwick and Western.
Part 1 Marketing Dynamics
Solve Multi-step Equations
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
What is economics?.
Randomized Algorithms Randomized Algorithms CS648 1.
The National Council on Economic Education/John Templeton Foundation Teaching the Ethical Foundations of Economics Lesson 7: Should We Allow a Market For.
Law 14 The Penalty Kick. 2 At the end of this lesson the student will do the following 3 things: Objectives 1.state when a penalty kick should be awarded.
EU market situation for eggs and poultry Management Committee 20 October 2011.
EU Market Situation for Eggs and Poultry Management Committee 21 June 2012.
5-1 Chapter 5 Theory & Problems of Probability & Statistics Murray R. Spiegel Sampling Theory.
Bellwork Do the following problem on a ½ sheet of paper and turn in.
REVIEW of Chapter 14 We begin this chapter by describing a cost accounting system. We then explain the procedures used to determine costs using a job.
Chapter 5 Plan-Space Planning.
2 |SharePoint Saturday New York City
VOORBLAD.
Direct-Current Circuits
Target Costing If you cannot find the time to do it right, how will you find the time to do it over?
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
© 2012 National Heart Foundation of Australia. Slide 2.
Reaching Agreements II. 2 What utility does a deal give an agent? Given encounter  T 1,T 2  in task domain  T,{1,2},c  We define the utility of a.
Note to the teacher: Was 28. A. to B. you C. said D. on Note to the teacher: Make this slide correct answer be C and sound to be “said”. to said you on.
Perfect Competition.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
Subtraction: Adding UP
Solving the eValue Rubik’s cube
Analyzing Genes and Genomes
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Announcement Paper presentation schedule online Second stage open
Testing Hypotheses About Proportions
Topic 16 Sorting Using ADTs to Implement Sorting Algorithms.
Globalization and International Trade Lecture 8 – academic year 2014/15 Introduction to Economics Fabio Landini.
School Choice 1. Today’s Class So far, have discussed different approaches to solving non-monetary allocation problems. Finding stable outcomes: DA algorithm.
Impossibility of Consensus in Asynchronous Systems (FLP) Ali Ghodsi – UC Berkeley / KTH alig(at)cs.berkeley.edu.
1 Decidability continued…. 2 Theorem: For a recursively enumerable language it is undecidable to determine whether is finite Proof: We will reduce the.
© Copyright 2011 John Wiley & Sons, Inc.
Matching Theory.
Social Networks 101 P ROF. J ASON H ARTLINE AND P ROF. N ICOLE I MMORLICA.
An Experimental Test of House Matching Algorithms Onur Kesten Carnegie Mellon University Pablo Guillen University of Sydney.
Kidney Exchange Enrichment Michael Levy David Flatow.
By Ariel Rosenfeld. סחר חליפין BARTERING.
Fair division Lirong Xia Oct 7, 2013.
Matching and Resource Allocation
Presentation transcript:

House Allocation and Kidney Exchange

House allocation problems In some matching markets, only one side of the market has preferences (or we care mostly about the preferences of one side). Examples students picking housing on campus. students picking freshman seminars sports teams picking players out of college

House allocation problem N individuals and N houses Each individual has strict preference over houses. Goal: assign each individual to a house. What would be a “good” outcome? An allocation is Pareto efficient if no pair of individuals, or set of individuals, can all do (weakly) better by trading houses. 3

(Random) Serial Dictatorship Each student gets a priority (perhaps randomly assigned as in the housing draw). Students pick houses in order of their priority. Theorem. Serial dictatorship is efficient (i.e. no mutually agreeable trades afterwards) and strategy-proof.

Proof Strategy-proof Individual with first pick gets her preferred house, so clearly no incentive to lie. Individual with second pick gets her preferred house among remaining houses, so again no reason to lie. and so on…

Proof Efficiency Individual with priority one doesn’t want to trade. Given that she is out, individual with priority two doesn’t want to trade. And so on….

Example of RSD Three people: 1,2,3 and houses A, B, C. Individual preferences: 1: A > B > C 2: A > C > B 3: B > C > A RSD: if order of picking is 1, 2, 3 1 gets A, 2 gets C, 3 gets B. Pareto efficient? Yes. What happens with other priority orders?

Top Trading Cycles Now imagine that individuals start with a house, but the original allocation might not be efficient. Gale’s TTC algorithm Each person points to most preferred house Each house points to its owner This creates a directed graph, with at least one cycle. Remove all cycles, assigning people to the house they are pointing at. Repeat using preference lists where the assigned houses have been deleted.

TTC in Pictures

Example Preferences of people and ownership p1: B > C > A > D A: p1 p2: A > B > C > D B: p2 p3: A > D > C > B C: p3 p4: B > A > C > D D: p4 Run the top trading cycles algorithm.

The Core Consider a candidate assignment in the house problem: A coalition of agents blocks if, from their initial endowments, there is an assignment among themselves that they all prefer to the candidate assignment. The core consists of all feasible unblocked assignments. What’s the difference between core & stability? Stability is ex post (no more trade), core is ex ante (diff. trade) But closely related: generally unstable outcomes cannot be in the core because they’d be blocked by coalition of the whole.

Properties of TTC Theorem. The outcome of the TTC algorithm is the unique core assignment in the housing market.

Proof Core Blocking coalition cannot involve only those matched at round one (all agents get first choice). Blocking coalition cannot involve only those matched in first two rounds (can’t improve round one guys, and to improve round two guys, need to displace round one guy). And so on by induction. 13

Proof Uniqueness: Consider doing something other than assigning the round one individuals their TTC houses. They would get together and block. Fixing the assignments for the individuals cleared at round one of the TTC, consider an assignment that differs for the individuals that would be assigned at round 2 of TTC. Same argument applies. And inductively for rounds 3,4….

Incentives in the TTC Theorem. The TTC algorithm is strategy-proof. Proof. For any agent assigned at round n if truthful No change in his report can given him a house that was assigned in earlier rounds. No house assigned in a later round will make him better off. So no benefit to doing anything but reporting truthfully.

Example of TTC Three people: 1,2,3 and houses A, B, C. Individual preferences and ownership 1: A > B > C 1 Owns B 2: A > C > B 2 Owns C 3: B > C > A 3 Owns A What trades take place under TTC? First round: 1-> A -> 3, 2 -> A -> 3, 3 -> B -> 1 So (1,A), (3,B) are cleared, leaving (2,C). What would be “wrong” with (1,B), (2,A), (3,C)?

Combining the problems What if some individuals start with houses but some do not? A common problem in allocating student housing Many universities, e.g. Michigan, Duke, Northwestern, Penn, CMU, use a variation of random serial dictatorship. Let’s see how it works.

Random Serial Dictatorship with Incumbency Each agent with a house decides whether to keep their house or enter a lottery. Agents who keep their house are done. Houses that are abandoned are available later on. Lottery used to order newcomers and agents who gave up their house (can be completely random or favor particular agents). Serial dictatorship applied using order from lottery and selection from available houses.

RSD with incumbency There is a problem… Existing tenants are not guaranteed to get at least as good a house as their current house! This may cause existing tenants to avoid the lottery and the market may not exploit all the possible gains from trade. Is there a way to protect existing tenants, while getting pareto efficient outcomes and maybe strategy-proofness?

Priority Line Mechanism aka “you request my house – I get your turn”. All agents are ordered according to some priority Agent with top priority chooses a house, then second agent, and so on, until someone requests the house of an existing tenant. If the existing tenant has already chosen a house, continue. If not, insert that tenant above the requestor and re-start the procedure with the existing tenant. If a cycle forms, it is formed exclusively by existing tenants – clear the cycle and proceed with the priority order.

Priority Line in pictures

Properties of Priority Line Theorem. The Priority Line mechanism is pareto-efficient, strategy-proof and makes no existing tenant worse off. Proof. Similar to results we’ve shown (try it!) Relationship with SD and TTC If there are no existing tenants: SD = Priority Line If everyone has a house: TTC=Priority Line In fact, Priority Line is just TTC except that every unoccupied house points to the agent with the (current) highest priority).

Example of Priority Line Three people: 1,2,3 and houses A, B, C. Individual preferences and ownership 1: A > B > C 2: A > C > B 3: B > C > A 3 Owns A What happens in priority line if priority is 1, 2, 3? 1 -> A (owned by 3), so 3 -> B, match (3,B), A vacant. Then 1->A, so match (1,A).Leaves (2,C). So (1,A), (2,C), (3,B) is the final matching.

Summary on House Allocation We looked at several variations House allocation problem Housing market problem House allocation with existing tenants And mechanisms for each problem Serial dictatorship Top Trading Cycles Priority Line (TTC with a twist) We showed that these mechanisms have desirable properties: efficiency, strategy-proof, core, etc.

Kidney Exchange

Kidney Exchange Transplants are standard treatment for patients with failed kidneys. Transplants come from two sources Cadaveric transplants: donors who have died. Living donor transplants: typically relatives, spouses, etc. There is a shortage of transplant kidneys. Wait list for a transplant has been getting longer. Over 90,000 patients are on the wait list. Roughly 20,000 transplants a year, majority cadaveric. In 2011, 4,720 people died while on the wait list.

Resolving the shortage Buying and selling kidneys is illegal. Section 301 of National Organ Transplant Act “it shall be unlawful for any person to knowingly acquire, receive or otherwise transfer any human organ for valuable consideration for use in human transplantation.” There are probably ways to increase the supply of cadaveric kidneys (e.g. make donation the default). We’re going to focus on ways to increase the supply of living donor kidneys.

Compatibility Donor kidney must be compatible with patient Blood type match O type patients can receive O kidneys A type patients can receive O or A kidneys B type patients can receive O or B kidneys AB type patients can receive any blood type Also tissue type match (HLA compatibility). Potential inefficiency: if a patient has a donor but can’t use the donor’s kidney, the donor goes home.

Paired Exchange Paired exchange: match two donor-patient pairs... Donor 1 is compatible with Patient 2, not Patient 1 Donor 2 is compatible with Patient 1, but Patient 2 List exchange: match one incompatible donor-patient pair and the waiting list Donor of incompatible pair donates to patient at the top of the waiting list. Patient of incompatible pair goes to the top of the wait list.

Do we know this problem? Problem seems very similar to house allocation with existing tenants. Roth, Sonmez and Unver (2004, QJE) The problems are (essentially) equivalent TTC can be used to efficiently assign kidneys. In 2004, RSU and doctors in Boston established first clearinghouse for New England.

Exchange in practice In practice, the problem has a few twists... US doctors think of compatibility as 0-1, which makes preferences different than the strict ranking in the housing model. At first, doctors wanted to limit to pairwise trades, and rule out list exchange. Compatible donors may not participate. A slightly simplified algorithm can be used.

Three-Way exchange It is possible but tricky to do multi-way exchanges, but they can help (esp. three-way). Pair is x-y if patient and donor have blood type x-y. Consider a population consisting of O-B, O-A, A-B, A-B, B-A (blood type incompatible) A-A, A-A, A-A, B-O (HLA incompatible) Assume there is no HLA problem across pairs Two-way (A-B,B-A), (A-A,A-A), (O-B,B-O) Three-way: (A-B,B-A), (A-A,A-A,A-A), (B-O,O-A,A-B).

Gains from Three-Way An odd number of A-A pairs can be transplanted. O-type donors can facilitate three transplants rather than two. In practice, O-type donors are short relative to demand, so useful to leverage them. Four-way exchanges also can help…

Donor Chains In July 2007, Alliance for paired donations started an “Altruistic Donor Chain” Altruistic donor in Michigan donated kidney to woman in Phoenix. Husband of Phoenix woman gave kidney to woman in Toledo. Her mom gave kidney to patient A in Columbus, whose daugher simultaneously gave kidney to patient B in columbus. And so on….

A Long Donor Chain