Introduction to Raster scan display C A E D C Computer Aided Engineering Design Centre.

Slides:



Advertisements
Similar presentations
Basic English for Computing
Advertisements

Television. Question: A television image is created by beams of moving electrons that collide with the inside front surface of the television picture.
Monitors and Sound Systems
Computer Graphics- SCC 342
Lecture 1 Computer Graphics Hardware Basic graphics hardware –Display devices –Video controller –Memory –CPU –System bus Graphics Hardware # 1 CG show.
Visual Displays Chapter 2 Burdea.
Monitors and Sound Systems lesson 5 This lesson includes the following sections:  Monitors  PC Projectors  Sound Systems.
CATHODE RAY TUBE.
Java ThreadsGraphics Programming Graphics Programming: Graphics Devices.
Graphics Device Principles B.Sc. (Hons) Multimedia ComputingMedia Technologies.
Graphics Device Principles B.Sc. (Hons) Multimedia ComputingMedia Technologies.
EET 450 – Advanced Digital Video Display Systems.
Imaging Science Fundamentals Chester F. Carlson Center for Imaging Science Display Systems Viewing Images.
CS 450: COMPUTER GRAPHICS REVIEW: INTRODUCTION TO COMPUTER GRAPHICS – PART 1 SPRING 2015 DR. MICHAEL J. REALE.
CRT MONITOR cathode-ray tube
Computer Monitors B. Konkoth. Types of monitors CRT Cathode Ray Tube LCD Liquid Crystal Display.
Terms 1. VGA VGA - Short for Video Graphics Array, VGA is a popular display standard developed by IBM and introduced in 1987 VGA provides 640 x 480 resolution.
Monitors and Sound Systems section 3A This lesson includes the following sections: · Monitors · PC Projectors · Sound Systems.
Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill Technology Education Copyright © 2005 by The McGraw-Hill Companies,
CRT MONITOR cathode-ray tube
Monitor. The Basics Often referred to as a monitor when packaged in a separate case, the display is the most-used output device on a computer. The display.
1 Hardware Devices Display Hardware Video display devices Hard-copy devices Input devices Locator Devices Keyboard devices Valuator Devices Choice Devices.
CRT MONITOR cathode-ray tube
IE433 CAD/CAM Computer Aided Design and Computer Aided Manufacturing Part-2 CAD Systems Industrial Engineering Department King Saud University.
Lecture 03 Fasih ur Rehman
CSIT 301 (Blum)1 Monitors. CSIT 301 (Blum)2 Monitors The monitor is the primary output device for a PC. The additional circuitry needed for a computer.
CHAPTER TWELVE DISPLAY TECHNOLOGY (I) CRT & LCD T.J.Iskandar Abd Aziz Adapted from Notes Prepared by: Noor Fardela Zainal Abidin Revised on Sept
display screens and ergonomics
University College Dublin1 Output devices COMP 3003.
Lecture No. 3.  Screen resolution  Color  Blank space between the pixels  Intentional image degradation  Brightness  Contrast  Refresh rate  Sensitivity.
Computer Graphics Hardware
Computer Graphics Lecture 04 Fasih ur Rehman. Last Class Overview of Graphics Systems – Display Devices Colors and colored displays Raster displays and.
Introduction to Display Devices. Monitor Overview Display device that forms an image by converting electronic signals from the computer into points of.
Overview of Graphics Systems. Cathode-ray Tube (CRT) - colors are represented using Red, Green, and Blue components - the CRT has a mechanism for.
CSIT 301 (Blum)1 Monitors. CSIT 301 (Blum)2 Monitors The monitor is the primary output device for a PC. The additional circuitry needed for a computer.
CHAPTER TWELVE DISPLAY TECHNOLOGY (I) CRT & LCD CGMB113/ CITB 123: MULTIMEDIA TECHNOLOGY 1 SARASWATHY SHAMINI Adapted from Notes Prepared by: Noor Fardela.
CS 445 / 645: Introductory Computer Graphics David Brogan Image from:
Hardware used in Multimedia Systems. Hardware demands on multimedia systems Multimedia puts huge demands on a computer system, so designers and users.
Introduction to Graphical Hardware Display Technologies
 Video Display Devices Video Display Devices  Cathode-ray tube (CRT) Monitors Cathode-ray tube (CRT) Monitors  Display Technologies Display Technologies.
2/1 A Look at Monitors Roll call Video: monitors Step-by-step lecture.
Beam Penetration & Shadow Mask Method
Display Technology INFO410 & INFO350 S Jack Pinches INFORMATION
Computer Fundamentals MSCH 233 Lecture 5. The Monitor A Monitor is a video screen that looks like a TV. It displays both the input data and instructions,
K.B.H.POLYTECHNIC,MALEGAON CAMP, MALEGAON. Computer Hardware & Maintenance. S.Y.C.M/I.F Guided By :- Mr.K.S.Pawar. Lecturer in Computer Department.
10/19 Monitors CRT monitors: Flat-panel displays Electron guns
Hardware Components Display. 1.Display (Monitor) The screen is made up of thousands of picture elements or pixels Displays can be either CRT (Cathode.
Computer Graphics.
2/14/ : Graphics Programming Seree Chinodom
Week 9 Monitors and output to the screen. Monitors, also known as Visual display units (V.D.Us) Desktop computers contain a Cathode Ray Tube (C.R.T.)
Computer Graphics Lecture -02. Frame Buffer The image being displayed is stored in a dedicated system memory area that is often referred.
1.  The primary output device in a graphics system is a video monitor. These monitors are based on Cathode Ray Tube (CRT) design.  CRT is a vacuum tube/electron.
LCD TELEVISION By SHRUTHY CHANDRAN EC B S8 ROLL NO:34.
Prepared By :- Kinjal Satasiya( ) (5 th sem) Guided By :- Dimple Agrawal.
The Cathode Ray Tube Monitor
How Does Your TV Work? A brief introduction.. Two Amazing Things about the Brain 1.Connecting the dots Pixels and resolution 2.Connecting the frames 15.
CAD Display Devices J. M. Dave Assistant Professor
Visual Displays Bowman, et al., pp Hodges and Babu 2011.
LED & LCD SUKHNANDAN COLLEGE MUNGELI A PRESENTATION ON BY:
Computer Graphics Lecture 3 Computer Graphics Hardware
Overview of Graphics Systems: I
Overview of Graphics Systems
CRT MONITOR cathode-ray tube
Overview of Graphics Systems
Overview of Graphics Systems
Introduction to Computers
CATHODE RAY TUBE.
Graphics Systems SUBJECT: COMPUTER GRAPHICS LECTURE NO: 02 BATCH: 16BS(INFORMATION TECHNOLOGY) 1/4/
CRT MONITOR cathode-ray tube
Chapter 2 Overview of Graphics Systems
Presentation transcript:

Introduction to Raster scan display C A E D C Computer Aided Engineering Design Centre

EXAMPLE RASTER GRAPHICS ARCHITECTURE

Raster Scan Displays (1)  Raster: A rectangular array of points or dots.  Pixel: One dot or picture element of the raster. Its intensity range for pixels depends on capability of the system. Raster

 Scan line: A row of pixels  Picture elements are stored in a memory called frame buffer.

Raster  derived from TV systems for a row of pixels  commonly referred to as a scan line  does influence algorithms – reducing memory requirements, parallelism, etc.  is the derivation of rasterization, scan-line algorithms Raster Scan

Raster Scan Displays (2)  Frame must be “refreshed” to draw new images  As new pixels are struck by electron beam, others are decaying  Electron beam must hit all pixels frequently to eliminate flicker  Critical fusion frequency  Typically 60 times/sec  Varies with intensity, individuals, phospher persistence, lighting...

Raster Scan Displays (3)  Intensity of pixels depends on the system for example black and white screens each point can be on or off thus it needs one bit of memory to represent each pixel.  To paint color screen additional bits are needed. If three bits are used, then number of different colors are 2*2*2.  A special memory is used to store the image with scan-out synchronous to the raster. We call this the frame buffer.

Raster Scan Displays (4)  Interlaced Scanning  Assume can only scan 30 times / second  To reduce flicker, divide frame into two “fields” of odd and even lines 1/30 Sec 1/60 Sec Field 1 Field 2 Frame

Raster Scan Displays (5) Scanning (left to right, top to bottom)  Vertical Sync Pulse: Signals the start of the next field  Vertical Retrace: Time needed to get from the bottom of the current field to the top of the next field  Horizontal Sync Pulse: Signals the start of the new scan line  Horizontal Retrace: The time needed to get from the end of the current scan line to the start of the next scan line non-interlacedinterlaced, cycle 1interlaced, cycle 2 interlaced, 2 cycles

Raster Scan Displays (6)  Raster CRT pros:  Allows solids, not just wire frames  Leverages low-cost CRT technology (i.e., TVs)  Bright! Display emits light  Cons:  Requires screen-size memory array  Discreet sampling (pixels)  Practical limit on size

Frame Buffers  A frame buffer may be thought of as computer memory organized as a two-dimensional array with each (x,y) addressable location corresponding to one pixel. Frame Buffer

Bit Planes or Bit Depth is the number of bits corresponding to each pixel. A typical frame buffer resolution might be  640 x 480 x 8  1280 x 1024 x 8  1280 x 1024 x 24

3-Bit Color Display

True Color Display 24 bit planes, 8 bits per color gun = 16,777,216

Raster Displays Cathode Ray Tubes (CRTs), most “tube” monitors you see. Very common, but big and bulky: A cathode ray tube (CRT) is a specialized vacuum tube in which images are produced when an electron beam strikes a phosphorescent surface. Most desktop computer displays make use of CRTs. The CRT in a computer display is similar to the "picture tube" in a television receiver. Liquid Crystal Displays (LCDs) - there are two types: 1) transmissive (Shine light through the image-forming element, e.g. laptops, those snazzy new flat panel monitors) 2) reflective (Bounce light off the image-forming element e.g. wrist watches).

CRT Monitor

Color CRT (Shadow Mask) shadow mask screen electron gun phosphor dot pattern Different phosphor for each color !!!

Electron Gun  Contains a filament that, when heated, emits a stream of electrons.  Electrons are focused with an electromagnet into a sharp beam and directed to a specific point of the face of the picture tube.  The front surface of the picture tube is coated with small phosphor dots.  When the beam hits a phosphor dot it glows with a brightness proportional to the strength of the beam and how often it is excited by the beam.

CRTs  Strong electrical fields and high voltage  Very good resolution  Heavy, not flat

 Sometimes the convergence point is behind the screen.  The picture appears to be blurred.  The picture appears to be blurred.  The Beam in focus at the center of the screen.  Dynamic focusing Difficulties with the CRT

Liquid Crystal Displays (LCDs)

 Liquid crystal displays use small flat chips which change their transparency properties when a voltage is applied.  LCD elements are arranged in an n x m array call the LCD matrix.  Level of voltage controls gray levels.  LCDs elements do not emit light, use backlights behind the LCD matrix

Liquid Crystal Displays (LCDs)  Color is obtained by placing filters in front of each LCD element.  Usually black space between pixels to separate the filters.  Because of the physical nature of the LCD matrix, it is difficult to make the individual LCD pixels very small.  Image quality dependent on viewing angle.

LCDs  LCD resolution is often quoted as number of color elements not number of RGB triads. Example: 320 horizontal by 240 vertical elements = 76,800 elements Equivalent to 76,800/3 = 25,500 RGB pixels "Pixel Resolution" is 185 by 139 (320/1.73, 240/1.73)

 Passive LCD screens  Cycle through each element of the LCD matrix applying the voltage required for that element.  Once aligned with the electric field the molecules in the LCD will hold their alignment for a short time LCDs (cont.)  Active LCD screens  Each element contains a small transistor that maintains the voltage until the next refresh cycle.  Higher contrast and much faster response than passive LCD

Advantages of LCDs FFlat LLightweight LLow power consumption

LCD vs. CRT  Three times brighter  Five times more contrast.  TFT technology more efficient.  Uses less electricity.  TFT technology more efficient.  Uses less electricity.  Takes less space.  Emits less radiation.  Distortion free viewing.  No flickering.  Narrow viewing angle.  Resolution