The odd thing about gravity . . .

Slides:



Advertisements
Similar presentations
Black Holes. Underlying principles of General Relativity The Equivalence Principle No difference between a steady acceleration and a gravitational field.
Advertisements

General Relativity Physics Honours 2006 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 9.
Mr Green sees the shorter, straight, green path and Mr. Red sees the longer, curved, red path.
Black Holes. Dark stars a star that has an escape velocity greater than the speed of light.
Chapter 18: Relativity and Black Holes
Special and General Relativity
Stellar Deaths II Neutron Stars and Black Holes 17.
Extragalactic Astronomy & Cosmology First-Half Review [4246] Physics 316.
Neutron Stars and Black Holes
Developing a Theory of Gravity Does the Sun go around the Earth or Earth around Sun? Why does this happen? Plato } Artistotle } Philosophy Ptolemy }& Models.
How do we transform between accelerated frames? Consider Newton’s first and second laws: m i is the measure of the inertia of an object – its resistance.
1. White Dwarf If initial star mass < 8 M Sun or so. (and remember: Maximum WD mass is 1.4 M Sun, radius is about that of the Earth) 2. Neutron Star If.
Review for Test #3 Sunday 3-5 PM Topics: The Sun Stars (including our Sun) The Interstellar medium Stellar Evolution and Stellar Death for Low mass, medium.
General Relativity Physics Honours 2007 A/Prof. Geraint F. Lewis Rm 557, A29 Lecture Notes 8.
Semester Physics 1901 (Advanced) A/Prof Geraint F. Lewis Rm 560, A29
Question The pressure that prevents the gravitational collapse of white dwarfs is a result of ______.  A) Conservation of energy  B) Conservation of.
Entanglement of cats |   =  |  +  |  Teleportation: making an exact replica of an arbitrary quantum state (while destroying the original...)
Chapter 13 Gravitation.
Chapter 12 Gravitation. Theories of Gravity Newton’s Einstein’s.
Chapter 13: Neutron Stars and Black Holes Einstein’s theories of Relativity Albert Einstein (Al) is best known for his two theories of relativity Special.
GRAVITY.
Gravity as Geometry. Forces in Nature Gravitational Force Electromagnetic Force Strong Force Weak Force.
Stationary Elevator with gravity: Ball is accelerated down.
Objectives Solve orbital motion problems. Relate weightlessness to objects in free fall. Describe gravitational fields. Compare views on gravitation.
General Relativity.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 29 Physics, 4 th Edition James S. Walker.
Universal Gravitation
General Relativity For a general audience. Precession of Mercury Mercury’s entire orbit undergoes precession at a known rate. Most of it can be explained.
Quiz #9 Suppose the Sun were to suddenly become a black hole with all of its mass falling into the black hole. Tell what would happen to the Earth (in.
Chapter 26 Relativity. General Physics Relativity II Sections 5–7.
Black Holes and General Relativity
Physics Montwood High School R. Casao. The special theory of relativity deals with uniformly moving reference frames; the frames of reference are not.
Einstein’s postulates 1.The laws of nature are the same for everyone. 2. The speed of light in a vacuum is constant for all observers.
General Relativity Principle of equivalence: There is no experiment that will discern the difference between the effect of gravity and the effect of.
General Relativity (1915) A theory of gravity, much more general than Newton’s theory. Newtonian gravity is a “special case”; applies when gravity is very.
Monday, Oct. 4, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Newton’s Law of Universal Gravitation 2.Kepler’s Laws 3.Motion in Accelerated Frames PHYS.
Relatively Einstein 2005 has been chosen as the World Year of Physics to celebrate the 100th anniversary of Einstein’s Miraculous Year. In this presentation,
General Relativity and the Expanding Universe Allan Johnston 4/4/06.
Fundamental Principles of General Relativity  general principle: laws of physics must be the same for all observers (accelerated or not)  general covariance:
Lecture 27: Black Holes. Stellar Corpses: white dwarfs white dwarfs  collapsed cores of low-mass stars  supported by electron degeneracy  white dwarf.
Extragalactic Astronomy & Cosmology Lecture GR Jane Turner Joint Center for Astrophysics UMBC & NASA/GSFC 2003 Spring [4246] Physics 316.
Monday, June 11, 2007PHYS , Summer 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 001 Lecture #8 Monday, June 11, 2007 Dr. Jaehoon Yu Forces in Non-uniform.
18/04/2004New Windows on the Universe Jan Kuijpers Part 1: Gravitation & relativityPart 1: Gravitation & relativity J.A. Peacock, Cosmological Physics,
Principle of Equivalence: Einstein 1907 Box stationary in gravity field Box falling freely Box accelerates in empty space Box moves through space at constant.
General Relativity Physics Honours 2008 A/Prof. Geraint F. Lewis Rm 560, A29 Lecture Notes 9.
Chapter 13 Gravitation Newton’s Law of Gravitation Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the.
Astronomy 1143 – Spring 2014 Lecture 19: General Relativity.
Hirophysics.com PATRICK ABLES. Hirophysics.com PART 1 TIME DILATION: GPS, Relativity, and other applications.
The Meaning of Einstein’s Equation*
General Relativity and Cosmology The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang.
Chris Done University of Durham/ISAS
General Theory of Relativity (Part 2). STOR vs GTOR Recall Special Theory looked at only inertial frames. General theory looks at accelerated frames of.
Testing General Relativity Hyperspace, Wormholes, and Warp Drives.
Astronomy 1020 Stellar Astronomy Spring_2016 Day-34.
Black Holes A stellar mass black hole accreting material from a companion star 1.
By: Jennifer Doran. What was Known in 1900 Newton’s laws of motion Maxwell’s laws of electromagnetism.
Basic Mechanics. Units Velocity and Acceleration Speed: Time rate of change of position. Velocity: Speed in a specific direction. Velocity is specified.
A neutron star over the Sandias?
Principle of Equivalance The Odd Thing about Gravity
Curvature in 2D… Imagine being an ant… living in 2D
Relativity H7: General relativity.
General Theory of Relativity
The odd thing about gravity . . .
Special vs. General Relativity
Intro to General Relativity
A theory of gravity, much more general than Newton’s theory.
Newton, Einstein, and Gravity
General Relativity: Part II
PHYS 1443 – Section 001 Lecture #8
Presentation transcript:

The odd thing about gravity . . . General Relativity The odd thing about gravity . . . The force of gravity is proportional to the mass of the object it acts on M F m The acceleration is the same, no matter the mass you drop r Suppose you are in an elevator Now, we cut the cable You fall Other things fall at the same rate To you, it looks like you are weightless This is why astronauts are weightless - they are always falling They are not far from the Earth

The equivalence principle Are there any other force formulas that are proportional to mass? Suppose you are on a merry-go-round Centrifugal force Like gravity, everything “accelerates” equally You can make it go away by letting go Can we create “gravitational” effects through acceleration? Put the person out in space in the elevator Attach to an accelerating rocket The effects are indistinguishable from gravity The effects of gravity are indistinguishable from the effects of being in an accelerated reference frame

The metric again We will start by reexamining the metric – the distance formula Or in this case, the proper time formula This formula works if you move in a straight line What if you don’t move in a straight line? You can divide any longer path into several short segments Then, find the distance formula for each one We won’t be using this formula Interestingly, you can show that the straight line has the longest proper time path – called a geodesic An object with no forces acting on it will always follow a geodesic, which is the longest proper time path between two points in spacetime

Changing Coordinates It is important to be able to change coordinates to a different system Let’s change to spherical coordinates: (x,y,z,t)  (r,,,t) Similarly,

Moving in curved coordinates The geodesic principle works in any coordinate system An object with no forces acting on it will always follow a geodesic, which is the longest proper time path between two points in spacetime It is possible, starting from the metric, to find equations that describe geodesic motion

Moving in curved coordinates (2) The effects of moving in curved coordinates looks like acceleration y But it really isn’t It is moving as straight as it can in curved coordinates You can always eliminate this apparent acceleration, simply by returning to “flat” coordinates It is possible, starting from the metric alone, to prove that spacetime is really just flat x

Curved Space It is possible to live in a spacetime that is inherently curved It’s not just the coordinates, it’s spacetime itself that is curved Consider the surface of the Earth Think of it as a 2D object Imagine two explorers setting out from the North Pole in “straight lines” (geodesics) At first they are traveling away from each other When they reach the equator, they will be traveling “parallel” to each other; their distance is no longer increasing They then start traveling towards each other They meet at the south pole The curvature is real It is space itself that is curved, not the coordinates only

Curvature How can we tell, looking only at the distance formula (the metric), if the curvature is real or a consequence of our coordinate choice? The Riemann Tensor tells you if it is curved If the Riemann tensor is zero, space is not curved; if it is non-zero, it is curved Changing coordinates doesn’t make it go away Some other measures of curvature: The Ricci tensor: The Ricci scalar: The Einstein tensor:

The Stress-Energy Tensor V What causes gravity? Energy and momentum The presence of matter, or mass density, is the cause of gravity Mass density is proportional to energy density If energy makes a difference, why not momentum as well? Momentum density also contributes to gravity The flow of energy and momentum also causes gravity Another way of looking at momentum density is the transfer of energy It is like power flowing through an area You can also transmit momentum across a boundary This is what forces do Pressure is a good example A more general example is called the stress tensor P A F Gravitational effects in general relativity are caused by the energy density u, the momentum density vector g, and the stress tensor

Einstein’s Equations The central idea of Einstein: Gravity looks just like acceleration, except When you have a source of gravity, parallel doesn’t remain parallel This tells you gravity has to do with curvature M a m a m The stress-energy tensor Tµ must be related to the curvature Einstein found a relationship that worked, now called Einstein’s equations It may look simple, but it isn’t This is really 16 equations (since and  each take on 4 values) The expression on the left contains hundreds of terms It is highly non-linear

Matter tells space how to curve, and space tells matter how to move Geodesics in curved spacetime Why do particles curve under the influence of gravity? Because spacetime itself is curved! An object with no non-gravitational forces acting on it will always follow a geodesic, which is the longest proper time path between two points in spacetime Matter tells space how to curve, and space tells matter how to move

Time slows down in proximity to a mass! The Schwarzschild Solution Assume you have a spherically symmetric source of gravity Doesn’t matter how it’s distributed You have to be outside it The solution you get for the Metric is called the Schwarzschild Solution M If you let M = 0, you get the same solution as before (flat spacetime) The factors of 1-2GM/c2r are the only change The change in the radial term (dr2) tells you that the relationship between radius and circumference isn’t the obvious one C  2r ! The dt2 term tells you that time runs more slowly when you are near a mass! Time slows down in proximity to a mass!

Gravitational time effects Suppose you are standing still (dr = d = d = 0) near a mass Time runs more slowly f0, 0 This can be measured directly by comparing atomic clocks in airplanes vs. atomic clocks on the ground Next generation atomic clocks: measure which floor you are on GPS wouldn’t even work if they didn’t take GR into account f,  This has an important effect when studying spectral lines from high mass/small radius stars The frequency f we observe away from the star’s gravitational field is increased compared to f0 Since wavelength is inversely proportional to frequency, the wavelength observed is longer, “red shifted”

Gravitational Forces time fast Why do objects accelerate in a gravitational field? time medium An object with no non-gravitational forces acting on it will always follow a geodesic, which is the longest proper time path between two points in spacetime I want to toss a ball to myself – release it and catch it one seconds later, at the same place What path should I take Goal: maximize the proper time the ball experiences time slow Strategy #1 – hope it levitates in place Bad – it is stuck near the Earth, where time runs slowly Strategy #2 – toss it very high in the air Bad – high speed causes time to slow down too much Strategy #3 – toss it moderately fast into the air Good – a compromise – it gains effect of going away from Earth without too much speed

Gravitational Deflection of Light Gravity affects all objects, because it is a curvature of spacetime The effect is small, for the Sun, and almost impossible to measure except from space or during eclipses For objects like galactic clusters, the effect is large and can be used to measure the mass of the cluster

Black Holes There is a radius where the equation looks like it goes crazy Called the Schwarzschild radius This radius is inside the physical radius of the Earth, Sun, and all planets in the solar system About 3 km for the Sun The formulas are no longer valid here If you managed to squeeze the Sun to this radius, something remarkable would happen The Sun would become a black hole

Precession of the Perihelion Newtonian gravity and General Relativity have almost the same predictions Some slight discrepancies Newtonian gravity says planets orbit the Sun in ellipses General relativity says the direction of the ellipse slowly changes with time Mercury This effect is called precession of the perihelion Depends on the speed Discovered, but not explained, before Einstein For Mercury, it works out to 43 arc-seconds per century This effect has since been seen in other systems Spacecraft Orbiting pairs of neutron stars Sun

Gravity Probe B Four superaccurate gyroscopes that orbited the Earth from 2004-2005 Accurate tests of special and general relativity Earth gyroscope Two effects it is looking for: As the object orbits, its motion and Earth’s gravity combine to make the direction of the axis tilt in the direction of motion This motion is called the “geodetic effect” April 2007: effect matches expectation at the 1% level September 2009: effect matches expectation at the 0.1% level The Earth is simultaneously rotating on ITS axis It drags spacetime along with it. This effect is called “frame dragging” September 2009: effect matches expectation at the 15% level

Gravity Probe B

Gravitational Waves Distortions of spacetime are produced by masses Just like electromagnetic fields are produced by charges If you have accelerating masses, you can make gravity waves Just like accelerating charges make electromagnetic waves These distortions affect everything that feels gravitational forces i.e. everything These effects are truly tiny Motions ~ 0.01 fm Several gravity wave detectors are looking for these effects No positive results yet

Gravitational Wave Detection The direct way to detect gravity waves is via interferometry Make light interfere after going along two LONG paths Extremely sensitive method LIGO – Laser Interferometer Gravity Wave Observatory Livingston, Louisiana Hanford Washington Indirect detection – If two objects are circling each other, they must lose energy They must move closer Frequency of orbit increases Detected in Pulsar pair PSR 1913+16 Hanford, Washington