第四届全国冷原子物理和量子信息青年学者学术讨论会

Slides:



Advertisements
Similar presentations
ENTANGLEMENT AND QUANTUM CONTROL OF COLD ATOMS CONFINED IN AN OPTICAL LATTICE CARLO SIAS Università di Pisa Quantum Computers, algorithms and chaos – Varenna.
Advertisements

2007 ITBS/ ITED Results Cedar Rapids Community Schools.
Anomalies of water and simple liquids Zhenyu Yan Advisor: H. Eugene Stanley Collaborators: Sergey V. Buldyrev, Pablo G. Debenedetti, Nicolas Giovambattista,
A Fractional Order (Proportional and Derivative) Motion Controller Design for A Class of Second-order Systems Center for Self-Organizing Intelligent.
Femtosecond lasers István Robel
A Comparison of Two CNOT Gate Implementations in Optical Quantum Computing Adam Kleczewski March 2, 2007.
Gregynog QIP meeting QIP Experiments with ions, atoms and molecules Christopher Foot, University of Oxford
Mechanical resonators towards quantum limit: NEMS group together with NANO, THEORY, KVANTTI Mika Sillanpää assoc. prof., team leader Juha-Matti Pirkkalainen.
Modified: OK. Childs 2002, Quant. Inf. Processing 1, 35 Source Fig. 14 Adaptation OK.
Source: Financial Times of London Global Banks 1999 – 2009 “Changing of the Guard”
Before Between After.
Robert E. Wagner Sophomore Intense Laser Physics Theory Unit Illinois State University Cycloatoms and high order harmonics in moderate intense laser fields.
Phase Selection in Interference of Non-Classical Sources
Density Matrix Tomography, Contextuality, Future Spin Architectures T. S. Mahesh Indian Institute of Science Education and Research, Pune.
Quantum dynamics and quantum control of spins in diamond Viatcheslav Dobrovitski Ames Laboratory US DOE, Iowa State University Works done in collaboration.
Dynamical response of nanoconductors: the example of the quantum RC circuit Christophe Mora Collaboration with Audrey Cottet, Takis Kontos, Michele Filippone,
Samansa Maneshi, Jalani Kanem, Chao Zhuang, Matthew Partlow Aephraim Steinberg Department of Physics, Center for Quantum Information and Quantum Control,
第十四届全国核结构大会暨第十次全国核结构专题讨论会 浙江 · 湖州 · Nuclear matter with chiral forces in Brueckner-Hartree-Fock approximation 李增花 复旦大学核科学与技术系(现代物理研究所)
The quantum signature of chaos through the dynamics of entanglement in classically regular and chaotic systems Lock Yue Chew and Ning Ning Chung Division.
Long-lived spin coherence in silicon with electrical readout
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
Eric Sorte University of Utah Department of Physics Generic Long-Time Relaxation Behavior of A Nuclear Spin Lattice.
Anderson localization in BECs
Universal Optical Operations in Quantum Information Processing Wei-Min Zhang ( Physics Dept, NCKU )
Solid state realisation of Werner quantum states via Kondo spins Ross McKenzie Sam Young Cho Reference: S.Y. Cho and R.H.M, Phys. Rev. A 73, (2006)
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
UNIVERSITY OF NOTRE DAME Xiangning Luo EE 698A Department of Electrical Engineering, University of Notre Dame Superconducting Devices for Quantum Computation.
Quantum Dots and Spin Based Quantum Computing Matt Dietrich 2/2/2007 University of Washington.
Deterministic teleportation of electrons in a quantum dot nanostructure Deics III, 28 February 2006 Richard de Visser David DiVincenzo (IBM, Yorktown Heights)
Coherent Manipulation and Decoherence of S=10 Fe8 Single- Molecule Magnets Susumu Takahashi Physics Department University of California Santa Barbara S.
STUDY OF CORRELATIONS AND NON-MARKOVIANITY IN DEPHASING OPEN QUANTUM SYSTEMS Università degli Studi di Milano Giacomo GUARNIERI Supervisor: Bassano VACCHINI.
Superconducting Qubits Kyle Garton Physics C191 Fall 2009.
Quantum Devices (or, How to Build Your Own Quantum Computer)
Dynamical decoupling in solids
CENTER FOR NONLINEAR AND COMPLEX SYSTEMS Giulio Casati - Istituto Nazionale di Fisica della Materia, and Universita’ dell’Insubria -National University.
A deterministic source of entangled photons David Vitali, Giacomo Ciaramicoli, and Paolo Tombesi Dip. di Matematica e Fisica and Unità INFM, Università.
Christine Muschik and J. Ignacio Cirac Entanglement generated by Dissipation Max-Planck-Institut für Quantenoptik Hanna Krauter, Kasper Jensen, Jonas Meyer.
Nonequilibrium Green’s Function and Quantum Master Equation Approach to Transport Wang Jian-Sheng 1.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
J. Su( 苏军 ) and F.S. Zhang( 张丰收 ) College of Nuclear Science and Technology Beijing Normal University, Beijing, China Tel: ,
Quantifying quantum discord and Entanglement of Formation via Unified Purifications 岑理相 四川大学 物理科学与技术学院.
Two Level Systems and Kondo-like traps as possible sources of decoherence in superconducting qubits Lara Faoro and Lev Ioffe Rutgers University (USA)
Generation of continuous variable entangled light Department of Physics Dalian University of Technology Dalian, , the People's Republic of China.
Quantum Optics with Surface Plasmons at CYCU 國家理論科學中心(南區) 成大物理系 陳光胤.
Cold Melting of Solid Electron Phases in Quantum Dots M. Rontani, G. Goldoni INFM-S3, Modena, Italy phase diagram correlation in quantum dots configuration.
Gang Shu  Basic concepts  QC with Optical Driven Excitens  Spin-based QDQC with Optical Methods  Conclusions.
Temperature and sample dependence of spin echo in SiC Kyle Miller, John Colton, Samuel Carter (Naval Research Lab) Brigham Young University Physics Department.
Optically detected magnetic resonance of silicon vacancies in SiC Kyle Miller, John Colton, Samuel Carter (Naval Research Lab) Brigham Young University.
1 Realization of qubit and electron entangler with NanoTechnology Emilie Dupont.
Large scale quantum computing in silicon with imprecise qubit couplings ArXiv : (2015)
Heavy hadron phenomenology on light front Zheng-Tao Wei Nankai University 年两岸粒子物理与宇宙学 研讨会,重庆, 5.7—5.12 。
Electron-nuclear spin dynamics in optically pumped semiconductor quantum dots K.V.Kavokin A.F.Ioffe Physico-Technical Institute, St.Petersburg, Russia.
On Decoherence in Solid-State Qubits Josephson charge qubits Classification of noise, relaxation/decoherence Josephson qubits as noise spectrometers Decoherence.
Universität Karlsruhe Phys. Rev. Lett. 97, (2006)
Quenching Spin Decoherence in Diamond through Spin Bath Polarization Gregory S. Boebinger, National High Magnetic Field Laboratory DMR High-Field.
Suggestion for Optical Implementation of Hadamard Gate Amir Feizpour Physics Department Sharif University of Technology.
Quantum Phase Transition of Light: A Renormalization Group Study
Dynamics of coupled cavity arrays embedded in a non-Markovian bath
Quantum entanglement, Kondo effect, and electronic transport in
Novel quantum states in spin-orbit coupled quantum gases
Quantum entanglement measures and detection
Decoherence at optimal point: beyond the Bloch equations
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Simulation of Condensed Matter Physics with ultrocold atoms
Many-body Spin Echo and Quantum Walks in Functional Spaces
NV centers in diamond: from quantum coherence to nanoscale MRI
The p-wave scattering of spin-polarized Fermi gases in low dimensions
Hole Spin Decoherence in Quantum Dots
郑 公 平 河南师范大学 第五届全国冷原子物理和量子信息青年学者学术讨论会
Dynamics of a superconducting qubit coupled to quantum two-level systems in its environment Robert Johansson (RIKEN, The Institute of Physical and Chemical.
Presentation transcript:

第四届全国冷原子物理和量子信息青年学者学术讨论会 Protection of center-spin coherence by a dynamically polarized nuclear spin core in a quantum dot Wenxian Zhang (张文献) 复旦大学 光科学与工程系 J.-L. Hu, J. Zhuang, J. Q. You, R.-B. Liu I will be pushed down, even by a weakest lady. I will be standing firmly once I am against a wall, even pushed by a strongest man. Protection provided by the wall. PRB 82, 045314 (2010). Aug. 3rd, 2010 @ 大连理工大学

Introduction and experimental background A two-region model Outline Introduction and experimental background A two-region model DNP process: formation of a polarized core Protection effect on the center-spin coherence Numerical simulations and discussions of experimental results Conclusions

Solid-state architecture of QIP Atomic/Optical Cavity QED Long coherence time Not easily interacted Not easily scaled Solid-state Quantum dots Easily scalable Easily interacted Not so great coherence Marcus@Harvard Coherence is important for QIP, especially for solid state architecture.

Quantum dots 500 nm Experimental conditions: A.C. Johnson’s Thesis, Harvard Univ.. Experimental conditions: QD size ~ 100  100  10 nm3 Low temperature ~ 100 mK Low magnetic field  100 mT Coherence time ~ 10 ns Spatial degree of freedom frozen

Qubit decoherence Classical bit Quantum bit (Qubit) 0 1 0 1 0 Arbitrary superposition of 2 basis states 2 states only Qubit decoherence: Interacting with environment → qubit “forgets” its phase No decoherence: Complete decoherence: 量子计算 和 并行计算 (DNA计算机)的差别 Dwave – 16 个量子比特

Free induction decay Petta et al., Science 309, 2180 (2005) 10 ns

Spin decoherence in a QD Decoherence source – hyperfine interaction: S – electron spin-1/2 Ik – k-th nuclear spin located at rk (also assume 1/2) Merkulov et al., Phys. Rev. B 65, 205309 (2002). Erlingsson et al., Phys. Rev. B 70, 205327 (2004). Deng & Hu, Phys. Rev. B 73, 241303(R) (2006). Zhang et al., Phys. Rev. B 74, 205313 (2006). Taylor et al., Phys. Rev. B 76, 035315 (2007).

Preserve coherence via spin echo Petta et al., Science 309, 2180 (2005) Dephasing only

Dynamical decoupling 10 ns τ = 0.1 FID NRD PDD RPD SDD SRPD PCDD2 τ = 0.1 10 ns Requires 2-axis short pulses (<1 ns). Zhang et al., Phys. Rev. B 75, 201302(R) (2007); 77, 125336 (2008).

Preserve coherence via polarization I. Uniform nuclear polarization (> 90% ) G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59, 2070 (1999). W. A. Coish and D. Loss, Phys. Rev. B 70, 195340 (2004). C. Deng and X. Hu, Phys. Rev. B 73, 241303(R) (2006). 1. Thermal polarizaiton in strong magnetic field – 10% 2. Spin dependent optical pumping – 60% II. Non-uniform nuclear polarization – DNP via electron Experiments (~1%): D. J. Reilly et al., Science 321, 817 (2008); Phys. Rev. Lett. 104, 236802 (2010). Theories (~1%): G. Ramon and X. Hu, Phys. Rev. B 75, 161301(R) (2007). M. Gullans et al., Phys. Rev. Lett. 104, 226807 (2010). W. Zhang et al., Phys. Rev. B 82, 045314 (2010).

Uniform polarization effect (I) N = 105, envelope of correlation function G⊥ Polarization is uniform. 10 times extension of dephasing time if P>90% Deng and Hu, Phys. Rev. B 73, 241303(R) (2006); Phys. Rev. B 78, 245301 (2008).

Uniform polarization effect (II) QSA Gaussian Random p = 0.46 p = 0.76 Numerical cases: different QD shapes (a) random and (b) box (uniform). Lines: analytical results. Zhang et al., Phys. Rev. B 74, 205313 (2006).

DNP process 3 2 1 1 2 3 Electron spin: +2 * Nuclear spin: -2

Double quantum dots Unpolarized Maximally polarized Ak = A, uniform Scaled with N=105 Zamboni Effect 50 times longer Ramon and Hu, Phys. Rev. B 75, 161301(R) (2007).

Non-uniform polarization

Polarization transfer – a two-region model H0 = 0 H0 = 6 I1 A1 = 10 A2 I2 Saturation at long time in large magnetic fields, Ikz ~ (Ak / H0)2.

Polarization ratio (single DNP cycle) I1 / I2 r A2 / A1 = 0.1 r ≡ P1 / P2 = (A2 / A1)2 in medium-to-large magnetic fields. Strongly coupled spins have higher polarization.

Multiple DNP cycles

Polarized core protection effect Polarization 4 2

Two-region model Two effects are separable: T1/2 is determined by b2 = (N2)1/2 A2 instead of b = (N1 A12+N2 A22)1/2 ; Protection effect of the polarized core: What skirt spins decoheres is not a single electron spins but a compound of an electron spin and a polarized nuclear spin core, which further makes the coherence time longer and make T1/2 increase linearly with N1.

Experimental results

Numerical methods Small N: Chebyshev expansion Dobrovitski et al., PRE 67, 056702 (2003). Large N: P-representation Al-Hassanieh et al., PRL 97, 037204 (2006). 态密度矩阵方程 – 10-12 核自旋 薛定谔方程 – 20-30 初始态-单位密度矩阵-的近似, 1/sqrt(dim(Hilbert space))

Protect effect in a QD N=20, Chebshev method

Large bath with P-representation

Protection effect: Summary 40 times extension of DNP with P = 0.7 (N=20), 0.25 (N=256) and Pk ~ Ak2; Linear decay at large polarizations; Small oscillations at short times; Abrupt increase of T1/2 if P is larger than a critical value PC but much smaller than 1; PC decreases with N increasing; Polarized nuclear spin core is formed if P > PC; Protection effect of the polarized core.

Thank You!

Polarized core protection effect Gaussian model Two region model

Exponential increase of T1/2 Perturbation results (Fermi golden rule): Gaussian Ak

DNP effect I Sx Sz N=20 Gaussian Ak P = 0.68

Double quantum dot Gaussian Ak, N = 21 DNP, Pk ~ Ak2 P = 0.7 Not related?

Experimental results