Signaling & Network Control Dr. Eng. Amr T. Abdel-Hamid NETW 704 Winter 2006 Message Transfer Part 3.

Slides:



Advertisements
Similar presentations
Signaling & Network Control NETW 704 MTP 3. Primary purpose is to route messages between SS7 network nodes in a reliable manner. It is equivalent to Layer.
Advertisements

Why to learn OSI reference Model? The answer is too simple that It tells us that how communication takes place between computers on internet but how??
HIGH-LEVEL DATA LINK CONTROL (HDLC) HDLC was defined by ISO for use on both point-to-point and multipoint data links. It supports full-duplex communication.
H. 323 Chapter 4.
William Stallings Data and Computer Communications 7 th Edition Chapter 13 Congestion in Data Networks.
Introduction to SS7 Konrad Hammel Sangoma Technologies.
Konrad Hammel Sangoma Technologies
CompTIA Network+ Chapter 2
Signaling & Network Control Dr. Eng. Amr T. Abdel-Hamid NETW 704 Winter 2008 Message Transfer Part 2 (MTP2)
TEL 355: Communication and Information Systems in Organizations Architecture: Signaling System 7 (SS7) Professor John F. Clark.
IPv6 Mobility David Bush. Correspondent Node Operation DEF: Correspondent node is any node that is trying to communicate with a mobile node. This node.
Stream Control Transmission Protocol 網路前瞻技術實驗室 陳旻槿.
Chapter Two Networking Standards and the OSI Model.
Chapter 10 Introduction to Wide Area Networks Data Communications and Computer Networks: A Business User’s Approach.
CS335 Networking & Network Administration Tuesday, April 20, 2010.
Internetworking Devices that connect networks are called Internetworking devices. A segment is a network which does not contain Internetworking devices.
1 Version 3.0 Module 10 Routing Fundamentals and Subnetting.
COE 342: Data & Computer Communications (T042) Dr. Marwan Abu-Amara Chapter 2: Protocols and Architecture.
Chapter 2 Network Models.
Error Checking continued. Network Layers in Action Each layer in the OSI Model will add header information that pertains to that specific protocol. On.
Gursharan Singh Tatla Transport Layer 16-May
Signaling Basic Concepts of CCS 7 Training Center
MODULE IV SWITCHED WAN.
Signaling & Network Control Dr. Eng. Amr T. Abdel-Hamid NETW 704 Winter 2006 Intelligent Networks.
© 2007 Cisco Systems, Inc. All rights reserved.Cisco Public 1 Communicating over the Network Network Fundamentals – Chapter 2.
1 Multi-Protocol Label Switching (MPLS). 2 MPLS Overview A forwarding scheme designed to speed up IP packet forwarding (RFC 3031) Idea: use a fixed length.
Signaling System #7 Kamalasanan.PK
Lecture 10. Signaling The process of generating and exchanging information between network components to establish, monitor or release connections and.
Protocol Architectures. Simple Protocol Architecture Not an actual architecture, but a model for how they work Similar to “pseudocode,” used for teaching.
SIGNALING. To establish a telephone call, a series of signaling messages must be exchanged. There are two basic types of signal exchanges: (1) between.
1 Module 15: Network Structures n Topology n Network Types n Communication.
Speaker:Yi-Jie Pan Advisor:Dr. Kai-Wei Ke 2014/04/28
M3UA Patrick Sharp.
William Stallings Data and Computer Communications 7 th Edition Data Communications and Networks Overview Protocols and Architecture.
1 Chapter 16 Protocols and Protocol Layering. 2 Protocol  Agreement about communication  Specifies  Format of messages (syntax)  Meaning of messages.
10/8/2015CST Computer Networks1 IP Routing CST 415.
Networking and Internet Dr. John P. Abraham Professor UT-RGV.
Computer Networks Performance Metrics. Performance Metrics Outline Generic Performance Metrics Network performance Measures Components of Hop and End-to-End.
University of the Western Cape Chapter 12: The Transport Layer.
TCP1 Transmission Control Protocol (TCP). TCP2 Outline Transmission Control Protocol.
1 Data Link Layer Lecture 20 Imran Ahmed University of Management & Technology.
TELE202 Lecture 5 Packet switching in WAN 1 Lecturer Dr Z. Huang Overview ¥Last Lectures »C programming »Source: ¥This Lecture »Packet switching in Wide.
Mobile Communication Common Channel Signaling System No. 7 (i.e., SS7 or C7) is a global standard for telecommunications defined by the International Telecommunication.
Signaling Fifth Meeting. SundayMondayTuesday Sixth meeting Seventh meeting.
COP 4930 Computer Network Projects Summer C 2004 Prof. Roy B. Levow Lecture 3.
TELEPHONE NETWORK Telephone networks use circuit switching. The telephone network had its beginnings in the late 1800s. The entire network, which is referred.
SS7 Signaling System No. 7 takes a whole new (digital) approach to signaling. With the new approach comes great functionality and better service.
1 Data Link Layer Lecture 23 Imran Ahmed University of Management & Technology.
Network Protocols and Standards (Part 2). The OSI Model In 1984, the International Organization for Standardization (ISO) defined a standard, or set of.
Teknik Routing Pertemuan 10 Matakuliah: H0524/Jaringan Komputer Tahun: 2009.
Chap 5. IS-41 Network Signaling
Signaling & Network Control Dr. Eng. Amr T. Abdel-Hamid NETW 704 Winter 2006 ISDN User Part (ISUP)
Signaling & Network Control
Signaling & Network Control Dr. Eng. Amr T. Abdel-Hamid NETW 704 Winter 2006 SCCP + TCAP.
Performance Comparison of Ad Hoc Network Routing Protocols Presented by Venkata Suresh Tamminiedi Computer Science Department Georgia State University.
19/04/2013Bahman R. Alyaei1 Chapter 9 Common Channel Signaling No. 7 (CCS7)
Signalling The interchange of information between the different functional parts of a telecomm network.
OSI Model OSI MODEL. Communication Architecture Strategy for connecting host computers and other communicating equipment. Defines necessary elements for.
OSI Model OSI MODEL.
The Concept of Universal Service
Lecturer, Department of Computer Application
DEPARTMENT OF COMPUTER SCIENCE
Switching & Data Networks Switching and Interconnection Networks
M3UA (MTP3-User Adaptation Layer)
Networking and Internet
Networking and Internet
Network Survivability
Chapter 3: Open Systems Interconnection (OSI) Model
OSI Model OSI MODEL.
1 Multi-Protocol Label Switching (MPLS). 2 MPLS Overview A forwarding scheme designed to speed up IP packet forwarding (RFC 3031) Idea: use a fixed length.
Presentation transcript:

Signaling & Network Control Dr. Eng. Amr T. Abdel-Hamid NETW 704 Winter 2006 Message Transfer Part 3

Amr Talaat, 2006 MTP 3 Level 3 of the Message Transfer Part resides at layer 3 of the OSI model and performs the SS7 protocol's network functions: The primary purpose of this protocol level is to route messages between SS7 network nodes in a reliable manner. This responsibility is divided into two categories:  Signaling Message Handling: concerned with routing messages to the appropriate network destination.  Signaling Network Management: is a set of messages and procedures whose purpose is to handle network failures in a manner that allows messages to continue to reach their destination whenever possible.

Amr Talaat, 2006 Point Codes Each node is uniquely identified by a Point Code. A national Point Code identifies a node within a national network, and an International Signaling Point Code (ISPC) identifies a node within the international network. An International Switching Center (ISC) is identified by both a national and international Point Code. All nodes that are part of the international signaling network use the ITU-T ISPC globally. National point codes are based on either the ITU national format or the ANSI format (North America). Each MSU contains both an Originating Point Code (OPC) and a Destination Point Code (DPC).

Amr Talaat, 2006 ITU PC The international Point Code is based on a hierarchical structure that contains the following three fields:  Zone (Africa 6, Europe 2, 1 not used)  Area/Network ( UK 144, France 016 to 023  Signaling Point (defined in the country Range 1 to 254)  Example PC in UK:

Amr Talaat, 2006 MTP3 Message Format

Amr Talaat, 2006 SIO

Amr Talaat, 2006 Service Indicator

Amr Talaat, 2006 SMH Discrimination  determining whether an incoming message is destined for the node that is currently processing the message. Distribution  When the discrimination function has determined that a message is destined for the current node. Routing  Routing takes place when it has been determined that a message is to be sent to another node.  There are two circumstances in which this occurs: node originates a message to be sent to the network. an STP has received a message that is destined for another node

Amr Talaat, 2006 Signaling Message Handling

Amr Talaat, 2006 Routing Table LOOK UP

Amr Talaat, 2006 Alias Point Code Routing An alias Point Code is a secondary PC used, in addition to the unique primary Point Code, for identifying a node. Another common name for an alias is a Capability Point Code. Multiple nodes (usually two) share the alias PC; this allows messages to be routed to either node using a common PC.

Amr Talaat, 2006 Alias Point Code Routing Example: The PC for STP 1 is , and the PC for STP 2 is The alias PC is used to identify both STP 1 and STP 2. As a result, SSP A can route messages to while load sharing across STP 1 and STP 2. SSP A cannot perform load sharing of SCCP traffic to the STP pair using the unique PC of either STP.

Amr Talaat, 2006 Signaling Link Selection The selection of outgoing link is based on information in the DPC and Signaling Link Selection field. The SLS is used to:  Ensure message sequencing.  Allow equal load sharing of traffic among all available links. if a user part sends messages at regular intervals and assigns the SLS values in a round-robin fashion, the traffic level should be equal among all links (within the combined linkset) to that destination.

Amr Talaat, 2006 Message Load Sharing User traffic is typically load-shared across different paths to maintain a balanced load on network equipment. There are two types of SS7 load sharing:  Load-sharing across linksets in a combined linkset  Load-sharing across links within a linkset The actual algorithm for generating the SLS code is not specified by the SS7 standards SLS field determines the distribution of messages across linksets and links as they traverse the network. The originating node generates an SLS code and places it into the Routing Label. At each node in the message path the SLS is used to map the message to a specific link.

Amr Talaat, 2006 Load Sharing The SLS codes for messages related to a particular communications exchange, such as an ISUP call, are generated with the same value to insure in-sequence delivery because they could take different network routes. Example:  SSP A generates the same SLS code 0100 for all messages associated with this particular call.  Messages from SSP B that are related to the same call use SLS code 0101 for all messages.

Amr Talaat, 2006 SLS ITU-T ITU-T networks use a four-bit SLS value:  If a combined linkset is being used, one bit of the SLS code is used to select the linkset at each node.  The remaining bits are used to select the link within the linkset.  If a combined linkset is not being used, all bits can be used to select a link within the linkset.  The ITU-T standards are not explicit about which bits are used for link and linkset selection.

Amr Talaat, 2006 SLS ANSI ANSI networks use an eight-bit SLS code:  The SLS code was originally 5 bits, but was later increased to 8 bits to provide better distribution across links.  If a combined linkset is being used, the least significant bit of the SLS is used for linkset selection the remaining bits are used for link selection  All bits are used to select the link when routing over a single linkset.

Amr Talaat, 2006 SLS ANSI Using SLS bit rotation is the standard method of load sharing in ANSI networks.  The original SLS code is right bit-shifted before the message is transmitted onto the link.  The bit rotation occurs at each node, before the message is transmitted.  An exception to this scheme is that SLS rotation is not performed for messages transmitted over C-Links.  Bit rotation is only done on the five least significant bits to maintain backward compatibility with five-bit SLS codes.  The least significant bit is used to choose the linkset from a combined linkset to STP 1 or STP 2.  After linkset and link selection and before message transmission, a right bit rotation is performed on the five least significant bits.

Amr Talaat, 2006 Bit Rotation Example

Amr Talaat, 2006 Signaling Network Management Traffic management:  responsible for dealing with signaling traffic, which are the messages generated by MTP3 users  keep traffic moving toward its destination, even in the event of network failures and congestion, with as little message loss or mis-sequencing as possible.  This movement often involves rerouting or retransmission. Route management:  exchanges information about routing status between nodes.  sends messages to notify other nodes about any changes  supplies information to traffic management Link management:  activates, deactivates, and restores signaling links.  notifying MTP users of the availability of signaling links  invoking procedures to restore service

Amr Talaat, 2006 Route Management Signaling route management communicates the availability of routes between SS7 nodes. Failures such as the loss of a linkset affect the ability to route messages to their intended destination. Route management uses the following messages to convey routing status to other network nodes:  Transfer Prohibited (TFP)  Transfer Restricted (TFR)  Transfer Allowed (TFA)  Transfer Controlled (TFC)

Amr Talaat, 2006 Route Management Each node maintains a state for every destination route. As route management messages are received, the state is updated based on the status conveyed by the message. This allows nodes to make appropriate routing choices when sending messages. Routes can have one of three different states:  Allowed  Prohibited  Restricted

Amr Talaat, 2006 Transfer Restricted The restricted state indicates a limited ability to route messages. This status signifies that the primary route is unavailable and that another route should be chosen, if it exists. If the restricted route is the last available route in a routeset, it is still used for routing.

Amr Talaat, 2006 Transfer Prohibited The Transfer Prohibited state indicates a complete inability to route messages to the affected destination. If one exists, another route must be chosen for routing. If no route exists, traffic management is notified that it cannot route messages to the destination.

Amr Talaat, 2006 Transfer allowed The transfer allowed state indicates that a route is available for carrying traffic. This is the normal state for in-service routes. When a route has been in the restricted or prohibited state and full routing capability is restored, the route's status is returned to transfer allowed.

Amr Talaat, 2006 Transfer Controlled The Transfer Controlled message is used to indicate congestion for a route to a particular destination. The TFC message implies "transmit" congestion, in contrast to the "receive" buffer congestion handled by MTP2.

Amr Talaat, 2006 Routeset Test Routeset Test is part of the Transfer Prohibited and Transfer Restricted procedures. While Transfer Prohibited and Transfer Restricted convey the status of the routeset, Routeset Test checks to ensure that the status is correct.

Amr Talaat, 2006 Traffic Management Traffic management depends on the information provided by link management and route management to direct user traffic by using the following procedures:  Change over  Emergency changeover  Time-controlled changeover  Change back  Time-controlled diversion  Forced rerouting  Controlled rerouting  MTP restart  Management inhibiting

Amr Talaat, 2006 Changeover & Time-Controlled Changeover

Amr Talaat, 2006 Time-Controlled Diversion

Amr Talaat, 2006 Forced and Controlled Rerouting

Amr Talaat, 2006 Link Inhabiting

Amr Talaat, 2006 MTP3/User Part Communication MTP3 uses primitives to communicate with MTP users about its routing status.  MTP-Transfer: Indicates the ability to transfer messages to a destination. This is the normal state for a destination when the network is healthy.  MTP-Pause: Indicates the complete inability to transfer messages to a particular destination. This primitive informs the MTP user that no messages should be sent to the destination.  MTP-Resume: Indicates the ability to transfer messages to a previously unavailable destination.  MTP-Status: Indicates a partial routing ability. This is used to indicate the congestion level to the user part in the case of multiple-level congestion.

Amr Talaat, 2006 Signaling Network Management Example