Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section.

Slides:



Advertisements
Similar presentations
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section.
Advertisements

Continuous Random Variables Chapter 5 Nutan S. Mishra Department of Mathematics and Statistics University of South Alabama.
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section.
Week11 Parameter, Statistic and Random Samples A parameter is a number that describes the population. It is a fixed number, but in practice we do not know.
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Sections.
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section.
Use of moment generating functions. Definition Let X denote a random variable with probability density function f(x) if continuous (probability mass function.
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section.
Statistics for Financial Engineering Part1: Probability Instructor: Youngju Lee MFE, Haas Business School University of California, Berkeley.
Probability theory 2010 Order statistics  Distribution of order variables (and extremes)  Joint distribution of order variables (and extremes)
Continuous Random Variables. For discrete random variables, we required that Y was limited to a finite (or countably infinite) set of values. Now, for.
Engineering Probability and Statistics - SE-205 -Chap 4 By S. O. Duffuaa.
Probability Distributions – Finite RV’s Random variables first introduced in Expected Value def. A finite random variable is a random variable that can.
Today Today: Chapter 5 Reading: –Chapter 5 (not 5.12) –Suggested problems: 5.1, 5.2, 5.3, 5.15, 5.25, 5.33, 5.38, 5.47, 5.53, 5.62.
A random variable that has the following pmf is said to be a binomial random variable with parameters n, p The Binomial random variable.
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section.
Copyright © Cengage Learning. All rights reserved. 4 Continuous Random Variables and Probability Distributions.
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Sections.
Chapter 21 Random Variables Discrete: Bernoulli, Binomial, Geometric, Poisson Continuous: Uniform, Exponential, Gamma, Normal Expectation & Variance, Joint.
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section.
Chapter 4. Continuous Probability Distributions
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section.
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section.
Functions of Random Variables. Methods for determining the distribution of functions of Random Variables 1.Distribution function method 2.Moment generating.
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section.
PROBABILITY AND STATISTICS FOR ENGINEERING Hossein Sameti Department of Computer Engineering Sharif University of Technology Two Functions of Two Random.
Functions of Random Variables. Methods for determining the distribution of functions of Random Variables 1.Distribution function method 2.Moment generating.
1 Topic 4 - Continuous distributions Basics of continuous distributions Uniform distribution Normal distribution Gamma distribution.
CS433 Modeling and Simulation Lecture 15 Random Number Generator Dr. Anis Koubâa 24 May 2009 Al-Imam Mohammad Ibn Saud Islamic University College Computer.
Lectures prepared by: Elchanan Mossel elena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section.
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section.
Ch5. Probability Densities II Dr. Deshi Ye
CIS 2033 based on Dekking et al. A Modern Introduction to Probability and Statistics Michael Baron. Probability and Statistics for Computer Scientists,
One Random Variable Random Process.
STA347 - week 31 Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5’s in the 6 rolls. Let X = number of.
ETM 607 – Random-Variate Generation
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Sections.
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section.
Point Estimation of Parameters and Sampling Distributions Outlines:  Sampling Distributions and the central limit theorem  Point estimation  Methods.
Discrete Random Variables. Introduction In previous lectures we established a foundation of the probability theory; we applied the probability theory.
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section.
STA347 - week 91 Random Vectors and Matrices A random vector is a vector whose elements are random variables. The collective behavior of a p x 1 random.
Engineering Probability and Statistics - SE-205 -Chap 3 By S. O. Duffuaa.
Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Sections.
Chapter 4 Continuous Random Variables and Probability Distributions  Probability Density Functions.2 - Cumulative Distribution Functions and E Expected.
CIS 2033 based on Dekking et al. A Modern Introduction to Probability and Statistics B: Michael Baron. Probability and Statistics for Computer Scientists,
Week 61 Poisson Processes Model for times of occurrences (“arrivals”) of rare phenomena where λ – average number of arrivals per time period. X – number.
Copyright © Cengage Learning. All rights reserved. 4 Continuous Random Variables and Probability Distributions.
Probability Distribution for Discrete Random Variables
4-1 Continuous Random Variables 4-2 Probability Distributions and Probability Density Functions Figure 4-1 Density function of a loading on a long,
Chapter 4 Continuous Random Variables and Probability Distributions
The Exponential and Gamma Distributions
Chapter 4 Continuous Random Variables and Probability Distributions
Cumulative distribution functions and expected values
Lectures prepared by: Elchanan Mossel Yelena Shvets
Lectures prepared by: Elchanan Mossel Yelena Shvets
Lectures prepared by: Elchanan Mossel Yelena Shvets
Some Continuous Probability Distributions
Lectures prepared by: Elchanan Mossel Yelena Shvets
Lectures prepared by: Elchanan Mossel Yelena Shvets
Lectures prepared by: Elchanan Mossel Yelena Shvets
Lectures prepared by: Elchanan Mossel Yelena Shvets
Lectures prepared by: Elchanan Mossel Yelena Shvets
Lectures prepared by: Elchanan Mossel Yelena Shvets
Data Analysis Statistical Measures Industrial Engineering
Lectures prepared by: Elchanan Mossel Yelena Shvets
Chapter 3 : Random Variables
Lectures prepared by: Elchanan Mossel Yelena Shvets
Lectures prepared by: Elchanan Mossel Yelena Shvets
Lectures prepared by: Elchanan Mossel Yelena Shvets
Presentation transcript:

Lectures prepared by: Elchanan Mossel Yelena Shvets Introduction to probability Stat 134 FAll 2005 Berkeley Follows Jim Pitman’s book: Probability Section 4.5

Cumulative Distribution Function Definition: For a random variable X, the function F(x) = P(X · x), is called the cumulative distribution function (cdf). A distribution is called continuous when the cdf is continuous.

Properties of the CDF. Claim: The cdf determines the probability of lying inside intervals: P(a < X · b) = F(b) – F(a). P{(a, b]} = F(b) – F(a). P{(a, b)} = lim x ! b - F(x) – F(a). P{(a,b) Å (c,d) } = P{(c,b)}, for a<c<b<d. P{b} = P{(a,b]} – P{(a,b)} = F(b) - lim x ! b - F(x). If F is continuous, P(a,b) = F(b) – F(a) and F(x) = 0 for all x. P{(a,b) [ (c,d) } = P{(a,d)}, for a<c<b<d.

Cumulative Distribution Function

Discrete Distributions Claim: If X is a discrete variable, then F(x) =  y · x P(X=y). Example: Let X be the numbers on a fair die. P{x} = F(x) – F(x - ) : P{X=6} = 1 – 5/6 = 1/6.

Discrete Distributions Example: Let X be the number of rolls before the first six appears when rolling a fair die. X » Geom(1/6), P(n)=(5/6) n-1 1/6 (for integer n) F(x) = 1 – (5/6) b x c For integer x: P{n} = F(n) – F(n-) = 1 - (5/6) n – (1 - (5/6) n-1 ) = (5/6) n-1 1/6.

Continuous Distributions with a Density Claim: if X has a continuous distribution given by a c.d.f F(x) and F is differentiable in all but finitely many points, Then the distribution has a density f X (x) = F’(x). “Pf”: We have F(x) = s - 1 x f X (t) dt So: F’(x) = f X (x) at the points where F is differentiable. Claim: If X is a continuous variable with a density f X (x) then F(x) = s - 1 x f X (y)dy.

Distributions with a Density Example: U » Uniform(0,1). Question: Show that X = 2|U – ½| is a Uniform variable as well. Solution: P(X · x) = P(2|U – ½| · x) = P( ½ - x/2 · U · ½ + x/2) =F(1/2 + x/2) – F(1/2 –x/2) = 1/2 + x/2- 1/2 + x/2 =x = F(x). Question: What is the distribution of 4| |U-1/2| - 1/4| ? So X has the same cdf as U therefore the same distribution.

Distribution of Min and Max. Let X 1, X 2, …, X n be independent random variables. X max = max{X 1, X 2, …, X n } & X min = min{X 1, X 2, …, X n }. It’s easy to find the distribution of X max and X min by using the cdf’s by using the following observations: For any x X max · x iff X i · x for all i. X min > x iff X i > x for all i.

Distribution of Min and Max. F max (x)= P(X max · x) = P(X 1 · x, X 2 · x, … X n · x) = P(X 1 · x)P( X 2 · x) … P(X n · x), by indep. = F 1 (x) F 2 (x)... F n (x). F min (x)= P(X min · x) = 1 – P(X min > x) = 1 - P(X 1 > x, X 2 > x, … X n > x) = 1 – (1 – F 1 (x)) (1 – F 2 (x)) … (1 – F n (x)). F max (x) = F 1 (x) F 2 (x)... F n (x). F min (x) = 1 – (1 – F 1 (x)) (1 – F 2 (x)) … (1 – F n (x)). Example: Suppose X i ’s all have exponential distributions with rates i. Question: Find the distribution of X min. Solution: For x <0, F i (x) =0 and for x ¸ 0, F i = 1-e - x. So for x < 0, F min = 0 and for x ¸ 0,F min = 1- e … + n. X min » Exp( … n }.

Order Statistics Let X 1, X 2, … X n be random variables, We can use the CDF to find the CDF of the k th largest of these X. We call this X (k), or the k th order statistic. The density for the min and max are special cases for k = 1 and k = n. If all the X i are identical and independent, we can find the density of the order statistics

Order Statistics P(X (k) ~ (x, x+dx)) = P(one of the X’s in dx)* P(k-1 of the X’s below x)* P(n-k of the X’s above x)= P(one of the X’s in dx) P(n-k of the X’s above x) (P(X > x) =1- F(x)) Number of ways to order X’s P(k-1 of the X’s below x) (P(X < x) = F(x))

Order Statistics – for Uniform R.V When X i are Unif(0,1) we obtain: f (k) (x) = Def: For r,s > 0 the beta(r,s) distribution is the distribution on (0,1) with density x r-1 (1-x) s-1 /B(r,s) where B(r,s) = s 0 1 x r-1 (1-x) s-1 dx Claim: If (X i ) i=1 n are i.i.d Unif(0,1) then X (k) has beta(k,n-k+1) distribution.

Beta and Gamma distributions Claim: If r=k and s=n-k+1 are integers then: B(r,s) = where  (r) = (r-1)! For integer r’s. Problem: Calculate E(X) and Var(X) for X with beta(r,s) distribution for integer r and s. Problem: For the order statistics of n i.i.d. unif(0,1) random variables, calculate E(X) and Var(X).

Percentiles and Inverse CDF. Definition: The p’th quantile of the distribution of a random variable X is given by the number x such that P(X · x) = p.

Simulating a RV with a given distribution A pseudo random number generator generates a sequence U 1,U 2,…U n each between 0 and 1, which are i.i.d. Uniform(0,1) random variables. Question: You are working for a company that is developing an on-line casino. How can you use this sequence to simulate n rolls of a fair die? Solution: You need a new sequence of variables each with a discrete uniform distribution on 1,2,3,4,5,6. Simple idea -- break up the unit interval into 6 intervals A k = ((k-1)/6, k/6], each of length 1/6 & let g(u) = k if u 2 A k. Example:

Simulating a RV with a given distribution Then X i = g(U i ) each has the desired distribution: P(X i = k) = P(g(U i )=k) = P(A k ) = 1/6.

Simulating a RV with a given distribution Note that for i=1,2,3,4,5,6 it holds that: g(F(i)) = g(i/6)=i.

Simulating a RV with a given distribution For a general discrete random variable with P(k) = p k, k=1,2,3… we can use the same idea, except each interval A k is now of length p k : A k = (p 1 +p 2 +…+p k-1, p 1 +p 2 +…+p k-1 +p k ]. The function g(u) defined in this way is a kind of an inverse of the cdf: g(F(k)) = k for all k=1,2,3, This observation can be used to simulate continuous random variables as well. Define F -1 (x) = min y F(y) = x.

Inverse cdf Applied to Standard Uniform Define F -1 (x) = min { y : F(y) = x} Theorem: For any cumulative distribution function F, with inverse function F -1, if U has a Uniform (0,1) distribution, then a random variable G = F -1 (U) has F as a cdf. Proof (imagine first that F is strictly increasing): P(G · x) = P{U · F(x)) = F(x).

Simulating a RV with a given distribution A pseudo random number generator gives a sequence U 1,U 2,…U n each between 0 and 1, which behave like a sequence of Uniform(0,1) random variables. Question: You are working for an engineering company that wants to model failure of circuits. You may assume that a circuit has n components whose life-times have Exp( i ) distribution. How can you generate n variables that would have the desired distributions? Solution: The cdf’s are F i (x) = 1 – e - i x. So we let G i = G(U i ) where G(u) = -log(1-u)/ i.