Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 1 5. zur Theorie β-Zerfall des Neutrons.

Slides:



Advertisements
Similar presentations
Martin zur Nedden, HU Berlin 1 WS 2007/08: Physik am LHC 6. SUper SYmmetry Beyond the Standard Model Introduction into SUper SYmmetry Minimal Super Symmetric.
Advertisements

LRP2010 WG5 Fundamental Interactions Nathal Severijns ( K.U.Leuven) for WG5 Scoping workshop Frankfurt, October th 2009.
Higgs physics theory aspects experimental approaches Monika Jurcovicova Department of Nuclear Physics, Comenius University Bratislava H f ~ m f.
1 Probing CP violation in neutrino oscillations with neutrino telescopes Kfir Blum, Yosef Nir, Eli Waxman arXiv: [hep-ph]
Particle Physics II Chris Parkes Heavy Flavour Physics Weak decays – flavour changing Mass states & flavour states GIM mechanism & discovery of charm CKM.
1Chris Parkes Part II CP Violation in the SM Chris Parkes.
: The mirror did not seem to be operating properly: A guide to CP violation C hris P arkes 12/01/2006.
TeV scale Universal seesaw, vacuum stability and Heavy Higgs at the LHC Yongchao Zhang ( 张永超 ) Center for High-Energy Physics, Peking University w/ Rabi.
The search for the God Particle
1. Internal symmetries isospin symmetry => nuclear physics SU(3) – symmetry =>hadrons chiral summetry => pions color symmetry =>quarks electroweak.
The Standard Model and Beyond [Secs 17.1 Dunlap].
H. Fritzsch. quantum chromo dynamics electroweak gauge theory.
Lecture 10: Standard Model Lagrangian The Standard Model Lagrangian is obtained by imposing three local gauge invariances on the quark and lepton field.
FLAVOURS 50 Years After SU(3) Discovery Djordje Šijački.
Weak Interactions Chapter 8 M&S Some Weak Interaction basics
1 A Model Study on Meson Spectrum and Chiral Symmetry Transition Da
1 Chiral Symmetry Breaking and Restoration in QCD Da Huang Institute of Theoretical Physics, Chinese Academy of
QCD – from the vacuum to high temperature an analytical approach.
Standard Model Lagrangian with Electro-Weak Unification The Standard Model assumes that the mass of the neutrino is zero and that it is “left handed” --
Derivation of Electro-Weak Unification and Final Form of Standard Model with QCD and Gluons  1 W 1 +  2 W 2 +  3 W 3.
Chiral Dynamics How s and Why s 2 nd lecture: Goldstone bosons Martin Mojžiš, Comenius University23 rd Students’ Workshop, Bosen, 3-8.IX.2006.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Symmetries By Dong Xue Physics & Astronomy University of South Carolina.
Smashing the Standard Model: Physics at the CERN LHC
P461 - particles I1 all fundamental with no underlying structure Leptons+quarks spin ½ while photon, W, Z, gluons spin 1 No QM theory for gravity Higher.
Modern Physics LECTURE II.
Aug 29-31, 2005M. Jezabek1 Generation of Quark and Lepton Masses in the Standard Model International WE Heraeus Summer School on Flavour Physics and CP.
The Higgs boson and its mass. LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12.
Masses For Gauge Bosons. A few basics on Lagrangians Euler-Lagrange equation then give you the equations of motion:
Particle Physics Chris Parkes 5 th Handout Electroweak Theory 1.Divergences: cancellation requires.
Electroweak interaction
Sigma model and applications 1. The linear sigma model (& NJL model) 2. Chiral perturbation 3. Applications.
Introduction to Flavor Physics in and beyond the Standard Model
Particle Physics: Status and Perspectives Part 4: The Standard Model
Physics 222 UCSD/225b UCSB Lecture 5 Mixing & CP Violation (1 of 3) Today we focus on Matter Antimatter Mixing in weakly decaying neutral Meson systems.
P Spring 2003 L5 Isospin Richard Kass
A Modified Rishon Model Patrick S. Walters AAPT-CPS Spring Meeting 2009 Penn State – Mont Alto March 27 th – 28 th 2009.
12004, TorinoAram Kotzinian Neutrino Scattering Neutrino interactions Neutrino-electron scattering Neutrino-nucleon quasi-elastic scattering Neutrino-nucleon.
QFD, Weak Interactions Some Weak Interaction basics
Nucleon Polarizabilities: Theory and Experiments
weak decays beta decay ofneutron problem energy and momentum not conserved e n p.
Huey-Wen Lin — Workshop1 Semileptonic Hyperon Decays in Full QCD Huey-Wen Lin in collaboration with Kostas Orginos.
Chiral symmetry breaking and low energy effective nuclear Lagrangian Eduardo A. Coello Perez.
[Secs 16.1 Dunlap] Conservation Laws - II [Secs 2.2, 2.3, 16.4, 16.5 Dunlap]
STANDARD MODEL class of “High Energy Physics Phenomenology” Mikhail Yurov Kyungpook National University November 15 th.
Lecture 2: The First Second Baryogenisis: origin of neutrons and protons Hot Big Bang Expanding and cooling “Pair Soup” free particle + anti-particle pairs.
Time Dependent Quark Masses and Big Bang Nucleosynthesis Myung-Ki Cheoun, G. Mathews, T. Kajino, M. Kusagabe Soongsil University, Korea Asian Pacific Few.
H. Quarks – “the building blocks of the Universe” The number of quarks increased with discoveries of new particles and have reached 6 For unknown reasons.
M. Cobal, PIF 2003 Weak Interactions Take place between all the quarks and leptons (each of them has a weak charge) Usually swamped by the much stronger.
Nils A. Törnqvist University of Helsinki Talk at Frascati January The Light Scalar Nonet, the sigma(600), and the EW Higgs.
Sally Dawson, BNL Standard Model and Higgs Physics FNAL LHC School, 2006 Introduction to the Standard Model  Review of the SU(2) x U(1) Electroweak theory.
ELECTROWEAK UNIFICATION Ryan Clark, Cong Nguyen, Robert Kruse and Blake Watson PHYS-3313, Fall 2013 University of Texas Arlington December 2, 2013.
Tensor and Flavor-singlet Axial Charges and Their Scale Dependencies Hanxin He China Institute of Atomic Energy.
Lecture 7. Tuesday… Superfield content of the MSSM Gauge group is that of SM: StrongWeakhypercharge Vector superfields of the MSSM.
Physics 222 UCSD/225b UCSB Lecture 12 Chapter 15: The Standard Model of EWK Interactions A large part of today’s lecture is review of what we have already.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
Monday, Apr. 11, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #18 Monday, Apr. 11, 2005 Dr. Jae Yu Symmetries Local gauge symmetry Gauge fields.
10/29/2007Julia VelkovskaPHY 340a Lecture 4: Last time we talked about deep- inelastic scattering and the evidence of quarks Next time we will talk about.
Nuclear Physics: Mossbauer Effect
Lecture 10: Standard Model Lagrangian
The Standard Model strong nuclear force electromagnetic force
Physics 222 UCSD/225b UCSB Lecture 2 Weak Interactions
Isospin Idea originally introduced in nuclear physics to explain observed symmetry between protons and neutrons (e.g. mirror nuclei have similar strong.
Spontaneous P-parity breaking in QCD at large chemical potentials
QCD and Heavy-ion Collisions
Lecture 12 Chapter 15: The Standard Model of EWK Interactions
helicity distribution and measurement of N spin
PHYS 3446 – Lecture #23 Standard Model Wednesday, Apr 25, 2012
Weak interactions.
Leptonic Charged-Current Interactions
Presentation transcript:

Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 1 5. zur Theorie β-Zerfall des Neutrons

Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 2 V−A weak interaction p e J μ W j μ n ν e

Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 3 1. universality and 2. CVC 1. Universality: G F /√2 = G μ = G τ =… e and g-charge universality is postulated in Standard Model, is required in Grand Unification. 2. Conservation of weak hadronic Vector Current CVC: hadronic vector coupling = 1: i.e. hadronic vector current: V μ weak = g·(p γ μ n) is conserved, like hadronic el.-magn. current: V μ el.-m. = e·(p γ μ p) is conserved. is required in electro-weak Standard Model

Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 4 CVC ≡ strong isospin conservation p e ν e p e ν e but neutron decay (q 2 =0) = + g  N  f  + … n n With N = (n, p) and  = (  −,  0,  + ): V μ =  N γ μ ½τ N + i ∂ μ  t  + … is conserved: ∂ μ V μ =0 with Isospin operators τ(2×2), t(3×3), … of strong interaction: CVC in β-decay = conservation of isospin current of strong interact. Isospin (global) symmetry SU(2) iso : N' = exp(−i ε·½τ) N leaves Lagrangean L invariant

Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 5 3. PCAC = g A /g V = 1.27: axial vector current A μ = is not conserved: ∂ μ A μ ≠ 0 old version (~40 yrs): pion decay  − → μ − + ν μ ' is axial decay, has: ∂ μ A μ ~ f  m  2, with small m  : → 3. Partial Conservation of Axial-vector Current applied to neutron decay, this gives Goldberger–Treiman relation:m N g A = f  g  N good to ~10%

Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 6 chiral symmetry "new" version (~20 yrs): if g A /g V = 1, then axial hadronic current is conserved: ∂ μ A μ = 0, the underlying (global) symmetry is the chiral symmetry of the strong interaction: N' = exp(−i η·½τ γ 5 ) N leaves Lagrangean L invariant Chiral symmetry is left-right symmetric: SU(2) L × SU(2) R. "L" and "R" can be defined only for massless particles, but nucleons are massive, and as g A /g V ≠ 1: i.e. chiral symmetry is not a good symmetry. however g A /g V is nearly 1: There is a chiral symmetry, but it is spontaneously broken: SU(2) L × SU(2) R → SU(2) iso transition (probably identical with quark-gluon phase transition).

Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 7 example: σ-model massless fermions, coupling g to: pions  (pseudoscalar, isotriplet) and to σ (scalar, isosinglet) plus quartic terms in , σ: spontaneous symmetry breaking of chiral symmetry: fermion mass generation:m N = f g pions  = Goldstones withm  = 0 make  's massive by explicit symmetry breaking term in L: then follows automatically: ∂ μ A μ ~ f m  2, i.e. f = f , and: m N g A = f  g  N = Goldberger–Treiman relation  σ ↑ =f

Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 8 predictions for g A /g V g A enters many other processes: π-N scattering (Adler-Weisberger relation) hyperon decay (current algebra relations) parton model (Björken, Ellis-Jaffe sum rules) Models: spin-flavor content of constituent quarks: g A /g V =5/3 constituent quarks in "bag"-potential: g A /g V =5/3×radial integral=5/3×0.65=1.09 QCD calculations on the lattice (lattice constant a): ←exp. g A /g V

Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 9 4. Weak magnetism Postulated before advent of Standard Model: Isovector of hadronic weak current t +, t − + isovector portion of hadronic el.-magn. current t 0 = isospin triplet (t +, t 0, t − ) of conserved currents.

Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 10 measurement of weak magnetism either from β-decay asymmetry spectrum (~ 1%-effect): Problem: statistics, undetected background or from β-decay difference spectrum (background free): Problem: statistics, detector function Today: ~1σ-effect

Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg : 3 quark flavors known: up u down d strange s Observation: Strangeness changing decays of K, Λ, … (ΔS=1) are suppressed by a factor 20 (w.r.t. ΔS=0): weak decay examples quark description rate 14 O (0 + → 0 + )u → d + e + + ν e ' G μ 2 cos 2 θ C n → p e ν π − → π 0 e ν d → u + e − + ν e ' G μ 2 cos 2 θ C K − → π 0 e ν Λ → p e ν s → u + e − + ν e 'G μ 2 sin 2 θ C μ → e ν ν−Gμ2Gμ2 2. Short history of CKM matrix a) 60ies: Suppression of strangeness-changing decays

Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 12 b) Cabbibo angle θ C decay rates found such that sin 2 θ C + cos 2 θ C = 1, with: sin 2 θ C = 0.05, cos 2 θ C = 0.95 (1:20), sin θ C = 0.22, cos θ C = 0.97, θ C = 13 0 = 0.22, Cabbibo: quark mixing is 'zero-sum game', is pure rotation in flavor space, quark mixing matrix is unitary:

Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 13 c) 70ies: more flavors 1970, GIM: "a 4th flavor: charm c, would naturally explain the observed absence of neutral currents in ΔS=0": 1972, KM:"a 3 rd generation: bottom b, top t, would naturally incorporate violation of T-invariance via a complex phase φ" with s i = sinθ i, c i = cosθ i, (i=1,2,3, for 1↔2, 1↔3, 2↔3 generation mixing)

Schleching 2/2008Präzisionsphysik mit Neutronen/5. Theorie n-Zerfall Neutron Decay St.Petersburg 14 d) ever since: filling of the CKM matrix