EE 369 POWER SYSTEM ANALYSIS

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

AP STUDY SESSION 2.
1
Chapter 3 Demand and Behavior in Markets. Copyright © 2001 Addison Wesley LongmanSlide 3- 2 Figure 3.1 Optimal Consumption Bundle.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
David Burdett May 11, 2004 Package Binding for WS CDL.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Properties of Real Numbers CommutativeAssociativeDistributive Identity + × Inverse + ×
Custom Statutory Programs Chapter 3. Customary Statutory Programs and Titles 3-2 Objectives Add Local Statutory Programs Create Customer Application For.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Engineering Mechanics
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Break Time Remaining 10:00.
Announcements Homework 6 is due on Thursday (Oct 18)
Turing Machines.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
PP Test Review Sections 6-1 to 6-6
EU market situation for eggs and poultry Management Committee 20 October 2011.
Bright Futures Guidelines Priorities and Screening Tables
EIS Bridge Tool and Staging Tables September 1, 2009 Instructor: Way Poteat Slide: 1.
EE369 POWER SYSTEM ANALYSIS
ECE 576 – Power System Dynamics and Stability
Bellwork Do the following problem on a ½ sheet of paper and turn in.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
Direct-Current Circuits
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
Chapter 1: Expressions, Equations, & Inequalities
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
© 2012 National Heart Foundation of Australia. Slide 2.
Adding Up In Chunks.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Analyzing Genes and Genomes
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Clock will move after 1 minute
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
Physics for Scientists & Engineers, 3rd Edition
1 Chapter 13 Nuclear Magnetic Resonance Spectroscopy.
Energy Generation in Mitochondria and Chlorplasts
Two Special Right Triangles
Select a time to count down from the clock above
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
Completing the Square Topic
Announcements Be reading Chapters 9 and 10 HW 8 is due now.
Lecture 3 Three Phase, Power System Operation Professor Tom Overbye Department of Electrical and Computer Engineering ECE 476 POWER SYSTEM ANALYSIS.
ECE 476 Power System Analysis Lecture 5:Transmission Line Parameters Prof. Tom Overbye Dept. of Electrical and Computer Engineering University of Illinois.
Lecture 6 Development of Transmission Line Models Professor Tom Overbye Department of Electrical and Computer Engineering ECE 476 POWER SYSTEM ANALYSIS.
Lecture 6 Development of Transmission Line Models Professor Tom Overbye Department of Electrical and Computer Engineering ECE 476 POWER SYSTEM ANALYSIS.
Lecture 5 Development of Transmission Line Models Professor Tom Overbye Department of Electrical and Computer Engineering ECE 476 POWER SYSTEM ANALYSIS.
Announcements Please read Chapters 4 and 5 Quiz today on HW 2
Announcements Please read Chapters 4 and 5
ECE 476 POWER SYSTEM ANALYSIS
Presentation transcript:

EE 369 POWER SYSTEM ANALYSIS Lecture 5 Development of Transmission Line Models Tom Overbye and Ross Baldick

Reading For lectures 5 through 7 read Chapter 4 Read Section 1.5, we will not be covering sections 4.7, 4.11, and 4.12 in detail Read Section 1.5, HW 4 is chapter 4 case study questions A through D, and Problems 2.31, 2.41, 2.43, 2.48, 4.1, 4.3, 4.6, due Thursday 9/26. HW 5 is Problems 4.9, 4.11, 4.13, 4.18, 4.21, 4.22, 4.24, 4.25 (assume Cardinal conductor and look up GMR in Table A.4); due Thursday 10/2.

Substation Bus

Inductance Example Calculate the inductance of an N turn coil wound tightly on a toroidal iron core that has a radius of R and a cross-sectional area of A. Assume 1) all flux is within the coil 2) all flux links each turn 3) Radius of each turn is negligible compared to R Circular path Γ of radius R within the iron core encloses all N turns of the coil and hence links total enclosed current of Ie = NI. Since the radius of each turn is negligible compared to R, all circular paths within the iron core have radius approximately equal to R.

Inductance Example, cont’d

Inductance of a Single Wire To develop models of transmission lines, we first need to determine the inductance of a single, infinitely long wire. To do this we need to determine the wire’s total flux linkage, including: 1. flux linkages outside of the wire 2. flux linkages within the wire We’ll assume that the current density within the wire is uniform and that the wire is solid with a radius of r. In fact, current density is non-uniform, and conductor is stranded, so our calculations will be approximate.

Flux Linkages outside of the wire

Flux Linkages outside, cont’d

Flux linkages inside of wire

Flux linkages inside, cont’d Wire cross section x r

Line Total Flux & Inductance

Inductance Simplification

Two Conductor Line Inductance Key problem with the previous derivation is we assumed no return path for the current. Now consider the case of two wires, each carrying the same current I, but in opposite directions; assume the wires are separated by distance D. D To determine the inductance of each conductor we integrate as before. However now we get some field cancellation. Creates counter- clockwise field Creates a clockwise field

Two Conductor Case, cont’d Direction of integration D R Key Point: Flux linkage due to currents in each conductor tend to cancel out. Use superposition to get total flux linkage. Left Current Right Current

Two Conductor Inductance

Many-Conductor Case Now assume we now have n conductors, with the k-th conductor having current ik, and arranged in some specified geometry. We’d like to find flux linkages of each conductor. Each conductor’s flux linkage, lk, depends upon its own current and the current in all the other conductors. For example, to derive the flux linkage for conductor 1, l1, we’ll be integrating from conductor 1 (at origin) to the right along the x-axis.

Many-Conductor Case, cont’d Rk is the distance from con- ductor k to point c. We’d like to integrate the flux crossing between b to c. But the flux crossing between a and c is easier to calculate and provides a very good approximation of l1k. Point a is at distance d1k from conductor k. At point b the net contribution to l1 from ik , l1k, is zero.

Many-Conductor Case, cont’d

Many-Conductor Case, cont’d

Symmetric Line Spacing – 69 kV

Line Inductance Example Calculate the reactance for a balanced 3f, 60Hz transmission line with a conductor geometry of an equilateral triangle with D = 5m, r = 1.24cm (Rook conductor) and a length of 5 miles.

Line Inductance Example, cont’d

Line Inductance Example, cont’d

Conductor Bundling To increase the capacity of high voltage transmission lines it is very common to use a number of conductors per phase. This is known as conductor bundling. Typical values are two conductors for 345 kV lines, three for 500 kV and four for 765 kV.

Bundled Conductor Flux Linkages For the line shown on the left, define dij as the distance between conductors i and j. We can then determine lk for conductor k. Assuming ¼ of the phase current flows in each of the four conductors in a given phase bundle, then for conductor 1:

Bundled Conductors, cont’d

Bundled Conductors, cont’d

Inductance of Bundle

Inductance of Bundle, cont’d

Bundle Inductance Example Consider the previous example of the three phases symmetrically spaced 5 meters apart using wire with a radius of r = 1.24 cm. Except now assume each phase has 4 conductors in a square bundle, spaced 0.25 meters apart. What is the new inductance per meter? 0.25 M

Transmission Tower Configurations The problem with the line analysis we’ve done so far is we have assumed a symmetrical tower configuration. Such a tower configuration is seldom practical. Therefore in general Dab  Dac  Dbc Unless something was done this would result in unbalanced Phases. Typical Transmission Tower Configuration

Transposition To keep system balanced, over the length of a transmission line the conductors are “rotated” so each phase occupies each position on tower for an equal distance. This is known as transposition. Aerial or side view of conductor positions over the length of the transmission line.

Line Transposition Example

Line Transposition Example

Transposition Impact on Flux Linkages “a” phase in position “1” “a” phase in position “3” “a” phase in position “2”

Transposition Impact, cont’d

Inductance of Transposed Line

Inductance with Bundling

Inductance Example Calculate the per phase inductance and reactance of a balanced 3, 60 Hz, line with: horizontal phase spacing of 10m using three conductor bundling with a spacing between conductors in the bundle of 0.3m. Assume the line is uniformly transposed and the conductors have a 1cm radius.

Inductance Example