1 Incentive-Compatible Interdomain Routing Joan Feigenbaum Yale University Vijay Ramachandran Stevens Institute of Technology Michael Schapira The Hebrew.

Slides:



Advertisements
Similar presentations
OSPF 1.
Advertisements

Introduction to IP Routing Geoff Huston. Routing How do packets get from A to B in the Internet? A B Internet.
Multihoming and Multi-path Routing
Multihoming and Multi-path Routing
Energy-Efficient Distributed Algorithms for Ad hoc Wireless Networks Gopal Pandurangan Department of Computer Science Purdue University.
and 6.855J Cycle Canceling Algorithm. 2 A minimum cost flow problem , $4 20, $1 20, $2 25, $2 25, $5 20, $6 30, $
1 Introduction to Transportation Systems. 2 PART I: CONTEXT, CONCEPTS AND CHARACTERIZATI ON.
Address-based Route Reflection Ruichuan Chen (MPI-SWS) Aman Shaikh (AT&T Labs - Research) Jia Wang (AT&T Labs - Research) Paul Francis (MPI-SWS) CoNEXT.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
ZMQS ZMQS
Jennifer Rexford Princeton University MW 11:00am-12:20pm Logically-Centralized Control COS 597E: Software Defined Networking.
Shadow Prices vs. Vickrey Prices in Multipath Routing Parthasarathy Ramanujam, Zongpeng Li and Lisa Higham University of Calgary Presented by Ajay Gopinathan.
Chapter 9 Introduction to MAN and WAN
1 Routing Protocols I. 2 Routing Recall: There are two parts to routing IP packets: 1. How to pass a packet from an input interface to the output interface.
McGraw-Hill © The McGraw-Hill Companies, Inc., 2004 Chapter 22 Network Layer: Delivery, Forwarding, and Routing Copyright © The McGraw-Hill Companies,
Routing and Congestion Problems in General Networks Presented by Jun Zou CAS 744.
© 2007 Cisco Systems, Inc. All rights reserved.Cisco Public 1 EN0129 PC AND NETWORK TECHNOLOGY I NETWORK LAYER AND IP Derived From CCNA Network Fundamentals.
25 seconds left…...
Algorithmic mechanism design Vincent Conitzer
© 2007 Cisco Systems, Inc. All rights reserved.Cisco Public ITE PC v4.0 Chapter 1 1 Link-State Routing Protocols Routing Protocols and Concepts – Chapter.
1 Chapter 6 Dynamic Programming Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.
COS 461 Fall 1997 Routing COS 461 Fall 1997 Typical Structure.
1 Incentive-Compatible Inter-Domain Routing Joan Feigenbaum Yale University Colloquium at Cornell University; October.
Network Layer: Internet-Wide Routing & BGP Dina Katabi & Sam Madden.
Does BGP Solve the Shortest Paths Problem? Timothy G. Griffin Joint work with Bruce Shepherd and Gordon Wilfong Bell Laboratories, Lucent Technologies.
Fundamentals of Computer Networks ECE 478/578 Lecture #18: Policy-Based Routing Instructor: Loukas Lazos Dept of Electrical and Computer Engineering University.
1 Interdomain Routing and Games Hagay Levin, Michael Schapira and Aviv Zohar The Hebrew University.
© 2007 Cisco Systems, Inc. All rights reserved.Cisco Public 1 Version 4.1 Routing Working at a Small-to-Medium Business or ISP – Chapter 6.
STABLE PATH PROBLEM Presented by: Sangeetha A. J. Based on The Stable Path Problem and Interdomain Routing Timothy G. Griffin, Bruce Shepherd, Gordon Wilfong.
Game Theoretic and Economic Perspectives on Interdomain Routing Michael Schapira Yale University and UC Berkeley.
Mobile and Wireless Computing Institute for Computer Science, University of Freiburg Western Australian Interactive Virtual Environments Centre (IVEC)
1 Internet History, Architecture, and Routing ECON 425/563 & CPSC 455/555 9/25/2008 ECON 425/563 & CPSC 455/555 9/25/2008.
Interdomain Routing and Games Michael Schapira Joint work with Hagay Levin and Aviv Zohar האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem.
Slide -1- February, 2006 Interdomain Routing Gordon Wilfong Distinguished Member of Technical Staff Algorithms Research Department Mathematical and Algorithmic.
Interdomain Routing Establish routes between autonomous systems (ASes). Currently done with the Border Gateway Protocol (BGP). AT&T Qwest Comcast Verizon.
Inherently Safe Backup Routing with BGP Lixin Gao (U. Mass Amherst) Timothy Griffin (AT&T Research) Jennifer Rexford (AT&T Research)
1 Mechanism Design for Interdomain Routing Rahul Sami Joint work with Joan Feigenbaum, David Karger, Vahab Mirrokni, Christos Papadimitriou, and Scott.
Routing.
Building a Strong Foundation for a Future Internet Jennifer Rexford ’91 Computer Science Department (and Electrical Engineering and the Center for IT Policy)
1 A BGP-based Mechanism for Lowest-Cost Routing Rahul Sami Yale University Joint work with: Joan Feigenbaum Yale Christos.
ROUTING PROTOCOLS Rizwan Rehman. Static routing  each router manually configured with a list of destinations and the next hop to reach those destinations.
Lecture Week 3 Introduction to Dynamic Routing Protocol Routing Protocols and Concepts.
ROUTING ON THE INTERNET COSC Aug-15. Routing Protocols  routers receive and forward packets  make decisions based on knowledge of topology.
Computer Networks Layering and Routing Dina Katabi
Inter-domain Routing Outline Border Gateway Protocol.
1 Computer Communication & Networks Lecture 22 Network Layer: Delivery, Forwarding, Routing (contd.)
9/15/2015CS622 - MIRO Presentation1 Wen Xu and Jennifer Rexford Department of Computer Science Princeton University Chuck Short CS622 Dr. C. Edward Chow.
M.Menelaou CCNA2 ROUTING. M.Menelaou ROUTING Routing is the process that a router uses to forward packets toward the destination network. A router makes.
By Sylvia Ratnasamy, Andrey Ermolinskiy, Scott Shenker Presented by Fei Jia Revisiting IP Multicast.
1. 2 Anatomy of an IP Packet IP packets consist of the data from upper layers plus an IP header. The IP header consists of the following:
Lecture 4: BGP Presentations Lab information H/W update.
Jennifer Rexford Fall 2014 (TTh 3:00-4:20 in CS 105) COS 561: Advanced Computer Networks BGP.
ACM SIGACT News Distributed Computing Column 9 Abstract This paper covers the distributed systems issues, concentrating on some problems related to distributed.
1 Version 3.1 Module 6 Routed & Routing Protocols.
© 2005 Cisco Systems, Inc. All rights reserved. BGP v3.2—3-1 Route Selection Using Policy Controls Using Multihomed BGP Networks.
Routing Protocols COSC 541 Data Commun. System & Networks Yue Dou.
Inter-domain Routing Outline Border Gateway Protocol.
© 2007 Cisco Systems, Inc. All rights reserved.Cisco Public 1 Version 4.1 Routing Working at a Small-to-Medium Business or ISP – Chapter 6.
1 Internet Routing 11/11/2009. Admin. r Assignment 3 2.
Working at a Small-to-Medium Business or ISP – Chapter 6
COMP 3270 Computer Networks
Introduction to Internet Routing
Can Economic Incentives Make the ‘Net Work?
COS 561: Advanced Computer Networks
COS 561: Advanced Computer Networks
COS 561: Advanced Computer Networks
COS 461: Computer Networks Spring 2014
Working at a Small-to-Medium Business or ISP – Chapter 6
COS 461: Computer Networks
Presentation transcript:

1 Incentive-Compatible Interdomain Routing Joan Feigenbaum Yale University Vijay Ramachandran Stevens Institute of Technology Michael Schapira The Hebrew University

2 Interdomain Routing Establish routes between autonomous systems (ASes). Currently done with the Border Gateway Protocol (BGP). AT&T Qwest Comcast Verizon

3 Why is Interdomain Routing Hard? Route choices are based on local policies. Autonomy: Policies are uncoordinated. Expressiveness: Policies are complex. AT&T Qwest Comcast Verizon My link to UUNET is for backup purposes only. Load-balance my outgoing traffic. Always choose shortest paths. Avoid routes through AT&T if at all possible.

4 Welfare-Maximizing Routing AS 1 AS n Mechanism p1p1 pnpn v n (. ) v 1 (. ) a1a1 anan Private information: Route valuations Strategies For each destination (independently / in parallel), compute: A confluent routing tree that maximizes the sum of nodes’ valuations for that destination, i.e., ∑ i v i (R i ) ; and VCG payments (nodes are paid for their contribution to the routing tree) … using a BGP-compatible (distributed) algorithm. Routes R 1, …, R n

5 VCG Payments The VCG payment to node k is of the form p k = ∑ i  k v i (T d ) – h k () where h k is a function that does not depend on k’s valuation. If h k ({v i }) = ∑ i ≠ k v i (T d -k ), then the payment to each node is p k (T d ) = ∑ i ≠ k [v i (T d ) – v i (T d -k )]. T d is the optimal routing tree to destination d. T d -k is the optimal tree to d if node k is removed.

6 Payment Components The total payment to node k can be broken down into payment components: p k (T d ) = ∑ i ≠ k p k i (T d ). Each payment component depends only on the valuations at some node i: p k i (T d ) = v i (T d ) – v i (T d -k ). Compute these in a distributed manner. Problem: We don’t want to run an algorithm for every T d -k (not efficient).

7 Routing-Protocol Desiderata Does not assume a priori knowledge of the network topology Distributed Autonomy-preserving Dynamic (responds to network changes) Space- and communication-efficient Complies with Internet next-hop forwarding

8 BGP Route Processing The computation of a single node repeats the following: Receive routes from neighbors Update Routing Table Choose “Best” Route Send updates to neighbors Paths go through neighbors’ choices, which enforces consistency. Decisions are made locally, which preserves autonomy. Uncoordinated policies can induce protocol oscillations. (Much recent work addresses BGP convergence.) Recently, private information, optimization, and incentive-compatibility have also been studied.

9 Known Results: Welfare Maximization and Interdomain Routing Routing-Policy Class Good Centralized Algorithm? Good Distributed Algorithm? LCP* General Policy  (and hard to approximate) Next Hop  Subjective Cost  (incl. some special cases)  (approx. is easy if >1 tree) Forbidden Set 

10 Question These are mostly negative results. Is there a realistic and useful class of routing policies (i.e., something broader than LCPs) for which we can get an incentive-compatible, BGP-compatible algorithm to compute routes and payments?

11 Gao-Rexford Framework (1) Neighboring pairs of ASes have one of: –a customer-provider relationship (One node is purchasing connectivity from the other node.) –a peering relationship (Nodes have offered to carry each other’s transit traffic, often to shortcut a longer route.) peer providers customers peer

12 Gao-Rexford Framework (2) Global constraint: no customer-provider cycles Local preference and scoping constraints, which are consistent with Internet economics: Gao-Rexford conditions => BGP always converges [GR01] Preference Constraints... i d R1R1 R2R2 k2k2 k1k1 If k 1 and k 2 are both customers, peers, or providers of i, then either ik 1 R 1 or ik 2 R 2 can be more valued at i. If one is a customer, prefer the route through it. If not, prefer the peer route. Scoping Constraints d k i j Export customer routes to all neighbors and export all routes to customers. Export peer and provider routes to all customers only. m.. peer customer provider

13 Efficient Payment Computation Next-hop valuations: The valuation of a route depends only on its next hop. Theorem: If Gao-Rexford conditions hold and ASes have next-hop policies, then routes and payments can be computed with “good” space efficiency. *(We only run “BGP” once.)

14 Next-Hop Payment Computation Send augmented BGP update message whenever best route or availability of a k-avoiding route changes: When an update message is received: –Store path and bits in routing table. –Scan bits to update best k-avoiding next hop. AS k 1 AS k 2 …AS k i Y/N … AS Path k i -avoiding path known?

15 Next-Hop Routing Table Store usable routes, availability of k-avoiding routes from neighbors (for all stored routes), and best k-avoiding next hops (for current most preferred route). Payment components are derived from next hops: p k i (T d ) = v i (T d ) – v i (T d -k ) for transit k ; = 0 otherwise. Destination d AS 2 AS 4AS 5 Optimal AS path Y Y Bit vector from update AS 1 AS 2 Best k-avoiding next hops d AS 1 AS 3AS 5 Alternate AS path Y Y Bit vector from update

16 Towards a General Theory Gao-Rexford + Next-Hop valuations are a special case. We identify a broad sufficient condition for valuations that permit BGP-compatible, incentive-compatible computation of routes and VCG payments.

17 Dispute Cycles Relation 1: Subpath... R1R1 R2R2 R 1 R 2 Relation 2: Preference... Q1Q1 Q2Q2 v i (Q 1 ) > v i (Q 2 ) Q 1 Q 2 d d i i Valuations do not induce a dispute cycle iff there is no cycle formed by the above relations on all permitted paths in the network. No dispute cycle => robust BGP convergence [GSW02, GJR03]

18 Example of a Dispute Cycle 1 2 d 3 v(12d) = 10 v(1d) = 5 v(23d) = 10 v(2d) = 5 v(31d) = 10 v(3d) = 5 1d1d2d2d3d3d 31d12d23d Dispute Cycle Subpath Preference

19 Policy Consistency..... d k i IF v k (R 1 ) > v k (R 2 ) R2R2 R1R1 THEN v i ((i,k)R 1 ) > v i ((i,k)R 2 ) Valuations are policy consistent iff, for all routes R 1 and R 2 (whose extensions are not rejected), (analogous to isotonicity [Sob.03])

20 Optimality Theorem: If the valuation functions are policy consistent and do not induce a dispute cycle, then BGP converges to the globally optimal routing tree.

21 Efficiently Computing Payments Local optimality: In a globally optimal routing tree, every node gets its most valued route. Theorem A: No dispute cycle + policy consistency => local optimality. Theorem B: Local optimality => If k is not on the path from i to d, then payment component p k i (T d ) = 0.

22 Conclusions Gao-Rexford + Next-Hop valuations are a reasonable class of policies that admit incentive-compatible, BGP-compatible computation of routes and VCG payments. Only a constant-factor increase in BGP routing-table size is required. Dispute-cycle-free and policy-consistent valuations generalize this result.

23 Future Work Approximability of the interdomain-routing problem? –Without restrictions on policies, no good approximation ratio is achievable [FSS04]. Remove bank? Optimal communication complexity?

24 Technical Report Full version of this paper is available as Yale University Technical Report YALEU/DCS/TR techreports/tr1342.pdf