Minimum Clique Partition Problem with Constrained Weight for Interval Graphs Jianping Li Department of Mathematics Yunnan University Jointed by M.X. Chen.

Slides:



Advertisements
Similar presentations
Approximation algorithms for geometric intersection graphs.
Advertisements

Algorithm Design Methods Spring 2007 CSE, POSTECH.
Bart Jansen 1.  Problem definition  Instance: Connected graph G, positive integer k  Question: Is there a spanning tree for G with at least k leaves?
Covers, Dominations, Independent Sets and Matchings AmirHossein Bayegan Amirkabir University of Technology.
Minimum Vertex Cover in Rectangle Graphs
 Review: The Greedy Method
C&O 355 Lecture 23 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
Approximation Algorithms
Introduction to Kernel Lower Bounds Daniel Lokshtanov.
Comp 122, Spring 2004 Greedy Algorithms. greedy - 2 Lin / Devi Comp 122, Fall 2003 Overview  Like dynamic programming, used to solve optimization problems.
Greedy Algorithms Greed is good. (Some of the time)
Lecture 24 Coping with NPC and Unsolvable problems. When a problem is unsolvable, that's generally very bad news: it means there is no general algorithm.
1 EE5900 Advanced Embedded System For Smart Infrastructure Static Scheduling.
1 NP-Complete Problems. 2 We discuss some hard problems:  how hard? (computational complexity)  what makes them hard?  any solutions? Definitions 
Approximation Algorithms Chapter 5: k-center. Overview n Main issue: Parametric pruning –Technique for approximation algorithms n 2-approx. algorithm.
Parallel Scheduling of Complex DAGs under Uncertainty Grzegorz Malewicz.
CS774. Markov Random Field : Theory and Application Lecture 17 Kyomin Jung KAIST Nov
Train DEPOT PROBLEM USING PERMUTATION GRAPHS
Complexity 16-1 Complexity Andrei Bulatov Non-Approximability.
Approximating Maximum Edge Coloring in Multigraphs
Computability and Complexity 23-1 Computability and Complexity Andrei Bulatov Search and Optimization.
Interval packing problem Multicommodity demand flow in a line Jian Li Sep
Balanced Graph Partitioning Konstantin Andreev Harald Räcke.
1 Ecole Polytechnque, Nov 7, 2007 Scheduling Unit Jobs to Maximize Throughput Jobs:  all have processing time (length) = 1  release time r j  deadline.
Implicit Hitting Set Problems Richard M. Karp Harvard University August 29, 2011.
Vertex Cover, Dominating set, Clique, Independent set
Approximation Algorithms
Dean H. Lorenz, Danny Raz Operations Research Letter, Vol. 28, No
Computability and Complexity 24-1 Computability and Complexity Andrei Bulatov Approximation.
The community-search problem and how to plan a successful cocktail party Mauro SozioAris Gionis Max Planck Institute, Germany Yahoo! Research, Barcelona.
Coloring Algorithms and Networks. Coloring2 Graph coloring Vertex coloring: –Function f: V  C, such that for all {v,w}  E: f(v)  f(w) Chromatic number.
Linear Programming – Max Flow – Min Cut Orgad Keller.
Graph Theory Ch.5. Coloring of Graphs 1 Chapter 5 Coloring of Graphs.
1 Introduction to Approximation Algorithms Lecture 15: Mar 5.
Hardness Results for Problems
Outline Introduction The hardness result The approximation algorithm.
Primal-Dual Meets Local Search: Approximating MST’s with Non-uniform Degree Bounds Author: Jochen Könemann R. Ravi From CMU CS 3150 Presentation by Dan.
1 Introduction to Approximation Algorithms. 2 NP-completeness Do your best then.
Simple and Improved Parameterized Algorithms for Multiterminal Cuts Mingyu Xiao The Chinese University of Hong Kong Hong Kong SAR, CHINA CSR 2008 Presentation,
APPROXIMATION ALGORITHMS VERTEX COVER – MAX CUT PROBLEMS
Design Techniques for Approximation Algorithms and Approximation Classes.
1 Introduction to Approximation Algorithms. 2 NP-completeness Do your best then.
An Algorithm for the Coalitional Manipulation Problem under Maximin Michael Zuckerman, Omer Lev and Jeffrey S. Rosenschein AAMAS’11.
An Algorithm for the Coalitional Manipulation Problem under Maximin Michael Zuckerman, Omer Lev and Jeffrey S. Rosenschein (Simulations by Amitai Levy)
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Sets.
A Clustering Algorithm based on Graph Connectivity Balakrishna Thiagarajan Computer Science and Engineering State University of New York at Buffalo.
Batch Scheduling of Conflicting Jobs Hadas Shachnai The Technion Based on joint papers with L. Epstein, M. M. Halldórsson and A. Levin.
Genome Rearrangements [1] Ch Types of Rearrangements Reversal Translocation
Approximation Algorithms
Restricted Track Assignment with Applications 報告人:林添進.
1 Short Term Scheduling. 2  Planning horizon is short  Multiple unique jobs (tasks) with varying processing times and due dates  Multiple unique jobs.
Data Structures & Algorithms Graphs
Implicit Hitting Set Problems Richard M. Karp Erick Moreno Centeno DIMACS 20 th Anniversary.
1 EE5900 Advanced Embedded System For Smart Infrastructure Static Scheduling.
NP-completeness NP-complete problems. Homework Vertex Cover Instance. A graph G and an integer k. Question. Is there a vertex cover of cardinality k?
1 Approximation algorithms Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij TexPoint fonts used in EMF. Read the TexPoint manual.
Network Partition –Finding modules of the network. Graph Clustering –Partition graphs according to the connectivity. –Nodes within a cluster is highly.
Introduction to NP Instructor: Neelima Gupta 1.
Approximation Algorithms Department of Mathematics and Computer Science Drexel University.
TU/e Algorithms (2IL15) – Lecture 11 1 Approximation Algorithms.
Chapter 10 NP-Complete Problems.
8.3.2 Constant Distance Approximations
Maximum Flow c v 3/3 4/6 1/1 4/7 t s 3/3 w 1/9 3/5 1/1 3/5 u z 2/2
Computability and Complexity
Maximum Flow c v 3/3 4/6 1/1 4/7 t s 3/3 w 1/9 3/5 1/1 3/5 u z 2/2
EE5900 Advanced Embedded System For Smart Infrastructure
Maximum Flow c v 3/3 4/6 1/1 4/7 t s 3/3 w 1/9 3/5 1/1 3/5 u z 2/2
CSE 417: Algorithms and Computational Complexity
Instructor: Aaron Roth
Lecture 24 Vertex Cover and Hamiltonian Cycle
Presentation transcript:

Minimum Clique Partition Problem with Constrained Weight for Interval Graphs Jianping Li Department of Mathematics Yunnan University Jointed by M.X. Chen , J.B. Li, W.D. Li and L.S. Wang

Outline  Introduction  Completeness of the MCPCW Problem  Some Approximation Algorithms for the MCPCW Problem  Linear Algorithm for the Special Case of the MCPCW Problem  Conclusion

1. Introduction 1.1 Interval Graph A graph G=(V,E) is called as an interval graph if each vertex v of G can be represented as an open interval I v on the real line such that any pair of distinct vertices u, v ∈ V are connected by an edge in E if and only if I u ∩I v ≠ ∮. The family { I v } v ∈ V is called as an interval representation of G. A graph G=(V,E) is called as an interval graph if each vertex v of G can be represented as an open interval I v on the real line such that any pair of distinct vertices u, v ∈ V are connected by an edge in E if and only if I u ∩I v ≠ ∮. The family { I v } v ∈ V is called as an interval representation of G.

1.2 Applications  Benzer invented interval graphs to study analysis of DNA chains, i.e., the linearity of the chain for higher organisms, and interval graph aids in locating genes along the DNA sequence.  Waterman and Griggs utilized interval graphs to study an important representation of DNA called restriction maps.

 Papadimitriou and Yannakakis utilized interval graphs to study the scheduling interval-order tasks.  Roberts utilized interval graphs to consider the problem of timing of traffic lights to optimize some criterion such as average waiting time.  Other applications of interval graphs shall be found in the papers or books of Carlisle, Golumbic, Schrijver and West et al.

1.3 Definition Minimum Clique Partition Problem with Minimum Clique Partition Problem with Constrained Weight for Interval Graphs (MCPCW) (MCPCW) Instance: a weighted interval graph G=(V,E;w) with intervals I 1, …, I, possessing weights w 1, …, w n, and a bound B; Instance: a weighted interval graph G=(V,E;w) with intervals I 1, …, I n, possessing weights w 1, …, w n, and a bound B; Question: Find a partition of these n intervals into the smallest number of cliques, such that sum of weights in each clique is not beyond B.

 In this paper, we prove that this MCPCW problem remains NP-hard in a strong sense and then design some approximation algorithms for it, each possessing constant ratios. Finally, we design an optimal algorithm to solve the problem in linear-time for the special version, where each interval has the same weight.

2. Completeness of the MCPCW Problem Theorem 1. The MCPCW problem is NP- hard in a strong sense. (Reduction is from 3-Partition Problem) (Reduction is from 3-Partition Problem) Theorem 2. For any epsilon >0, there is no approximation algorithm having a factor 3/2-epsilon for the MCPCW problem, unless P=NP. (Reduction is from Partition Problem) (Reduction is from Partition Problem)

3 Some Approximation Algorithms for MCPCW Problem For any intervals I i with its weight w i, denote integers o(i) and d(i), respectively, as the left endpoint and the right endpoint, located on the real line from left to right. We give a linear order ` ≦ ' on G: for any two intervals I i, I j of G: denote I i ≦ I j if and only if (1) either d(i)< d(j), or (2) d(i)= d(j) and o(i)< o(j), or (3) d(i)= d(j), o(i)= o(j) and w i ≦ w j

In order to simply describe our two approximation algorithms for the MCPCW problem, we utilize an optimal algorithm of Tarjan to compute a maximum cardinality independent set in such an interval graph, and this optimal algorithm runs in time O(n). Tarjan’s algorithm is denoted as Max- Set. In order to simply describe our two approximation algorithms for the MCPCW problem, we utilize an optimal algorithm of Tarjan to compute a maximum cardinality independent set in such an interval graph, and this optimal algorithm runs in time O(n). Tarjan’s algorithm is denoted as Max- Set.

Algorithm Clique-Partition I Step 1 Use Max-Set to compute a maximum independent set I={I i_1,I i_2,…, I i_r } in G; Step2 Use the Greedy method to obtain r `maximal’ disjoint cliques C 1, …, C r in the consecutive process, where C t contains the interval I i_t, for each 1 ≦ t ≦ r, such that {C 1, C 2,…, C r } is a partition of these n intervals; Step 3 For each clique C j ={I j_1,I j_2,…, I j_{m_j} }, where 1 ≦ j ≦ r and I j_1 =I i_j, choose some suitable cliques as follows: for 1 ≦ t ≦ m j and the `alive cliques' C j 1, …, C j k containing the intervals I j_1,…, I j_{t-1}, add the current interval I j_t into some `alive clique' C j k' if the total weight sum of I j_t and the intervals in the original clique C j k' is not beyond B, where 1 ≦ k' ≦ k, otherwise open a new `alive clique' as C j k+1 to contain the current interval I j_t as the first interval, until t>m j ; Step 4 Output all cliques obtained from the step 3.

Algorithm Clique-Partition II Step 1 Use Max-Set to compute a maximum independent set I={I i_1,I i_2,…, I i_r } in G; Step2 Use the Greedy method to obtain r disjoint cliques C 1, …, C r, as in the last algorithm; Step 3 For each clique C j ={I j_1,I j_2,…, I j_{m_j} }, where 1 ≦ j ≦ r and I j_1 =I i_j, index these m j intervals into the decrease order according to their weights, i.e., w(I j_1 ) ≧ w(I j_2 ) ≧ … ≧ w(I j_{m_j} ), then choose some suitable cliques as the sequl: for 1 ≦ t ≦ m j and the `alive cliques' C j 1, …, C j k containing the intervals I j_1,…, I j_{t- 1}, add the current interval I j_t into some `alive clique' C j k' if the total weight sum of I j_t and the intervals in the original clique C j k' is not greater than B, where 1 ≦ k' ≦ k, otherwise open a new `alive clique' as C j k+1 to contain the current interval I j_t as the first interval, until t>m j ; Step 4 Output all cliques obtained from the step 3.

For convention, the interval is called as a large interval if this interval has its weight greater than B/2, otherwise the interval is called as a small interval. Algorithm Clique-Partition III Step 1 Put each a large interval I i into a clique C i, and then remove all large intervals from G (the current interval graph G only contains small intervals);

Step 2 Sort all small intervals according to the precede rules (1) and (2), i.e, the small intervals in G are sorted as I 1, …, I n' ; Step 3 Depending on the linear order ` ≦ ' on G, choose a `smallest’ element, I min, in the current graph G as the alive interval; and find the `maximal’ clique C from the current graph G to contain such an alive interval I min, all intervals in such a clique C are I i, I i+1, …, I j, where I i =I min ;

Step 4 Use the similar method at the step 3 in the algorithm Clique-Partition I, and then obtain m i disjoint cliques C i_1, C i_2, …, C i_{m_i-1} from the current alive clique C, the cliques C i_1, C i_2, …, C i_{m_i-1} must have weights greater than B/2: Step 4.1: If the clique C i_{m_i} has its weight greater than B/2, then put G:=G- ∪ t=1 m_i C i_t and produce the m i cliques C i_1, C i_2, …, C i_{m_i} ;

Step 4.2: If m i ≧ 2 and the clique C i_{m_i} has its weight not greater than B/2, then put G:=G- ∪ t=1 m_i-1 C i_t and produce the m i -1 cliques C i_1, C i_2, …, C i_{m_i-1} ; Step 4.3: If m i =1 and the clique C i_{m_i} has its weight not greater than B/2, then put G:=G- C and produce the clique C; Step 5 Continue to execute the step~3 until G= ∮ ; Step 6 Output all cliques obtained from the steps 1 and 4.

Theorem 3 The algorithm Clique-Partition I is an approximation algorithm with a factor 3 for the MCPCW problem, its time complexity is O(n 2 ). Theorem 4 The algorithm Clique-Partition II is an approximation algorithm with a factor 5/2 for the CCPI problem, its time complexity is O(nlog n). Theorem 5 The algorithm Clique-Partition III is an approximation algorithm with a factor 2 for the MCPCW problem, its time complexity is O(n 2 ).

4. Linear Algorithm for the Special Case of the MCPCW Problem Now we study the MCPCW problem in the version where all intervals have the same weight 1. When we utilize the algorithms Clique-Partition I, II or III on this special version, we obtain a feasible solution whose value is not greater than 3, 5/2 or 2 times that of optimal solution. But when we modify the algorithm Clique-Partition II in some ways, we design an optimal algorithm in the linear-time for the MCPCW problem for the special version.

Algorithm Clique-Partition VI Step 1 Sort all intervals of G according to the precede rules~1-2 of the linear order ` ≦ ' on G; Step 2 Choose the smallest element, I min, in G as the alive interval; and find the maximal clique C from G to contain such an alive interval I min, and then sort all intervals in C according to the precede rules 1-2, all intervals in C are sorted as I i_1, I i_2, …, I i_r, here C i_1 = I min ;

Step 3 For the current alive clique C={I i_1, I i_2, …, I i_r }, choose the new cliques from C, depending on the following choice regulations: Step 3.1 If r< B, i.e., |C| < B, then output the alive clique C only containing these r intervals; and put G:=G-{I i_1, I i_2, …, I i_r }; Step 3.2 If r ≧ B, set r=sB +r 0, where s=[r/B] and 0 ≦ r 0 <B, then output the s cliques C 1 ={I i_1, …, I i_{B} }, C 2 ={I i_{B+1}, …, I i_{2B} },…, C s ={I i_{(s-1)B+1},…,I i_{sB} }; and G:=G-{I i_1, …, I i_{B}, …, I i_{(s-1)B+1} }, …,I i_{sB} }

Step 4 Continue to execute the step 2 until G= ∮ ; Step 5 Output all cliques at the step 3. Theorem 6 The algorithm Clique-Partition VI is a linear optimal algorithm for the special version of the MCPCW problem, where all intervals have the same weight 1.

5. Conclusion  we study the MCPCW problem, and we proved that this problem is NP-hard in a strong sense and it cannot be approximated within a factor 3/2-epsilon in polynomial-time for any epsilon >0, then we have designed an approximation algorithm with factors 3, 5/2, 2.  For further work, we would design some approximation algorithms for the MCPCW problem with factors lower than 2, improving main results. On the other way, we would design some approximation algorithms to possess lower running time.