Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter

Slides:



Advertisements
Similar presentations
Goals Investigate circuits that bias transistors into different operating regions. Two Supplies Biasing Four Resistor Biasing Two Resistor Biasing Biasing.
Advertisements

Professor Ronald L. Carter
L3 January 221 Semiconductor Device Modeling and Characterization EE5342, Lecture 3-Spring 2002 Professor Ronald L. Carter
University of Toronto ECE530 Analog Electronics Review of MOSFET Device Modeling Lecture 2 # 1 Review of MOSFET Device Modeling.
Semiconductor Device Modeling and Characterization – EE5342 Lecture 6 – Spring 2011 Professor Ronald L. Carter
L28 April 281 EE5342 – Semiconductor Device Modeling and Characterization Lecture 28 - Spring 2005 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 12 – Spring 2011 Professor Ronald L. Carter
L30 May 61 EE5342 – Semiconductor Device Modeling and Characterization Lecture 30 - Spring 2004 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 14 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
Introduction to Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) Chapter 7, Anderson and Anderson.
EXAMPLE 6.1 OBJECTIVE Fp = 0.288 V
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2010 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 17 – Spring 2011 Professor Ronald L. Carter
L08 Feb 081 Lecture 08 Semiconductor Device Modeling and Characterization EE Spring 2001 Professor Ronald L. Carter
L23 08April031 Semiconductor Device Modeling and Characterization EE5342, Lecture 23 Spring 2003 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 7 – Spring 2011 Professor Ronald L. Carter
Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 5 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 15 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 27 – Spring 2011 Professor Ronald L. Carter
L27 23Apr021 Semiconductor Device Modeling and Characterization EE5342, Lecture 27 -Sp 2002 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 19 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 22 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011 Professor Ronald L. Carter
L19 26Mar021 Semiconductor Device Modeling and Characterization EE5342, Lecture 19 -Sp 2002 Professor Ronald L. Carter
L27 April 241 Semiconductor Device Modeling & Characterization Lecture 27 Professor Ronald L. Carter Spring 2001.
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L. Carter
Field Effect Transistor (FET)
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
Semiconductor Device Modeling and Characterization – EE5342 Lecture 10– Spring 2011 Professor Ronald L. Carter
EE5342 – Semiconductor Device Modeling and Characterization Lecture 23 April 12, 2010 Professor Ronald L. Carter
The MOS capacitor. (a) Physical structure of an n+-Si/SiO2/p-Si MOS capacitor, and (b) cross section (c) The energy band diagram under charge neutrality.
EE130/230A Discussion 10 Peng Zheng.
Damu, 2008EGE535 Fall 08, Lecture 21 EGE535 Low Power VLSI Design Lecture #2 MOSFET Basics.
L26 April 261 EE5342 – Semiconductor Device Modeling and Characterization Lecture 26 - Spring 2005 Professor Ronald L. Carter
L25 April 171 Semiconductor Device Modeling & Characterization Lecture 25 Professor Ronald L. Carter Spring 2001.
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 26 - Fall 2009
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 24 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 23 – Spring 2011
EE 5340 Semiconductor Device Theory Lecture 27 - Fall 2003
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 23 - Fall 2003
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 2303/001 - Electronics I Summer 2001 Lecture 15
Semiconductor Device Modeling & Characterization Lecture 21
Semiconductor Device Modeling & Characterization Lecture 20
EE 5340 Semiconductor Device Theory Lecture 29 - Fall 2010
Professor Ronald L. Carter
Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 28 - Fall 2003
Semiconductor Device Modeling & Characterization Lecture 23
Presentation transcript:

Semiconductor Device Modeling and Characterization – EE5342 Lecture 35 – Spring 2011 Professor Ronald L. Carter

©rlc L35-29Apr2011 Flat-band parameters for p-channel (n-subst)

©rlc L35-29Apr2011 Fully biased p- channel V T calc

©rlc L35-29Apr2011 p-channel V T for V C = V B = 0 Fig 10.21*

©rlc L35-29Apr2011 Ion implantation

©rlc L35-29Apr2011 “Dotted box” approx

©rlc L35-29Apr2011

Mobilities

©rlc L35-29Apr2011 Differential charges for low and high freq From Fig 10.27* high freq.

©rlc L35-29Apr2011 Ideal low-freq C-V relationship Fig 10.25*

©rlc L35-29Apr2011 Comparison of low and high freq C-V Fig 10.28*

©rlc L35-29Apr2011 Effect of Q’ ss on the C-V relationship Fig 10.29*

©rlc L35-29Apr2011 n-channel enhancement MOSFET in ohmic region 0< V T < V G V B < 0 E Ox,x > 0 Acceptors Depl Reg V S = 0 0< V D < V DS,sat e - e - e - e - e - n+ p-substrate Channel

©rlc L35-29Apr2011 Conductance of inverted channel Q’ n = - C’ Ox (V GC -V T ) n’ s = C’ Ox (V GC -V T )/q, (# inv elect/cm 2 ) The conductivity  n = (n’ s /t) q  n G =  n (Wt/L) = n’ s q  n (W/L) = 1/R, so I = V/R = dV/dR, dR = dL/(n’ s q  n W)

©rlc L35-29Apr2011 Basic I-V relation for MOS channel

©rlc L35-29Apr2011 I-V relation for n-MOS (ohmic reg) IDID V DS V DS,sat I D,sat ohmic non-physical saturated

©rlc L35-29Apr2011 Universal drain characteristic 9I D1 IDID 4I D1 I D1 V GS =V T +1V V GS =V T +2V V GS =V T +3V V DS saturated, V DS >V GS -V T ohmic

©rlc L35-29Apr2011 Characterizing the n-ch MOSFET VDVD IDID D S G B V GS VTVT

©rlc L35-29Apr2011 Low field ohmic characteristics

©rlc L35-29Apr2011 MOSFET Device Structre Fig. 4-1, M&A*

©rlc L35-29Apr a (A&M)

©rlc L35-29Apr2011 Figure 4-7b (A&M)

©rlc L35-29Apr2011 Figure 4-8a (A&M)

©rlc L35-29Apr2011 Figure 4-8b (A&M)

©rlc L35-29Apr2011 Body effect data Fig 9.9**

©rlc L35-29Apr2011 MOSFET equivalent circuit elements Fig 10.51*

©rlc L35-29Apr2011 n-channel enh. circuit model G D B S C gs C gd C gb C bs C bd RD RG RB RDS Idrain D SS D SD

©rlc L35-29Apr2011 MOS small-signal equivalent circuit Fig 10.52*

©rlc L35-29Apr2011 MOSFET circuit parameters

©rlc L35-29Apr2011 MOSFET circuit parameters (cont)

©rlc L35-29Apr2011 Substrate bias effect on V T (body-effect)

©rlc L35-29Apr2011 Body effect data Fig 9.9**

©rlc L35-29Apr2011 Fully biased n- channel V T calc

©rlc L35-29Apr2011 Values for  ms with silicon gate

©rlc L35-29Apr2011 Q’ d,max and x d,max for biased MOS capacitor Fig 8.11** x d,max (microns) |Q’ d,max |/q (cm -2 )

©rlc L35-29Apr2011 I-V relation for n-MOS IDID V DS V DS,sat I D,sat ohmic non-physical saturated

©rlc L35-29Apr2011 MOS channel- length modulation Fig 11.5*

©rlc L35-29Apr2011 Analysis of channel length modulation

©rlc L35-29Apr2011 References CARM = Circuit Analysis Reference Manual, MicroSim Corporation, Irvine, CA, M&A = Semiconductor Device Modeling with SPICE, 2nd ed., by Paolo Antognetti and Giuseppe Massobrio, McGraw-Hill, New York, **M&K = Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, *Semiconductor Physics and Devices, by Donald A. Neamen, Irwin, Chicago, 1997