Copyright © Cengage Learning. All rights reserved.

Slides:



Advertisements
Similar presentations
Copyright © Cengage Learning. All rights reserved.
Advertisements

1
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 3 CPUs.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
Break Time Remaining 10:00.
7 Applications of Integration
Turing Machines.
PP Test Review Sections 6-1 to 6-6
Bright Futures Guidelines Priorities and Screening Tables
Copyright © Cengage Learning. All rights reserved.
Slide 6-1 COMPLEX NUMBERS AND POLAR COORDINATES 8.1 Complex Numbers 8.2 Trigonometric Form for Complex Numbers Chapter 8.
Bellwork Do the following problem on a ½ sheet of paper and turn in.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
Vector-Valued Functions 12 Copyright © Cengage Learning. All rights reserved.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
P Preparation for Calculus.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
© 2012 National Heart Foundation of Australia. Slide 2.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
Splines I – Curves and Properties
6.4 Best Approximation; Least Squares
Copyright © Cengage Learning. All rights reserved.
Inverse Trigonometric Functions
Exponential and Logarithmic Functions
Polynomial Functions of Higher Degree
Copyright © Cengage Learning. All rights reserved.
Trigonometric Functions
Chapter 6 Equations 6.1 Solving Trigonometric Equations 6.2 More on Trigonometric Equations 6.3 Trigonometric Equations Involving Multiples Angles 6.4.
Trigonometric Functions of Any Angle
Copyright © Cengage Learning. All rights reserved.
Analyzing Genes and Genomes
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Copyright © 2010 Pearson Addison-Wesley. All rights reserved. Chapter 15 2 k Factorial Experiments and Fractions.
Intracellular Compartments and Transport
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
Physics for Scientists & Engineers, 3rd Edition
Energy Generation in Mitochondria and Chlorplasts
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
9. Two Functions of Two Random Variables
Parametric Surfaces.
Multiple Integrals 12. Surface Area Surface Area In this section we apply double integrals to the problem of computing the area of a surface.
Vector Analysis Copyright © Cengage Learning. All rights reserved.
Vector Analysis 15 Copyright © Cengage Learning. All rights reserved.
Vector Functions 10. Parametric Surfaces Parametric Surfaces We have looked at surfaces that are graphs of functions of two variables. Here we.
Multiple Integration Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved. 16 Vector Calculus.
Copyright © Cengage Learning. All rights reserved. 15 Multiple Integrals.
15 Copyright © Cengage Learning. All rights reserved. Vector Analysis.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Copyright © Cengage Learning. All rights reserved.
Presentation transcript:

Copyright © Cengage Learning. All rights reserved. Vector Analysis Copyright © Cengage Learning. All rights reserved.

Copyright © Cengage Learning. All rights reserved. Parametric Surfaces Copyright © Cengage Learning. All rights reserved.

Objectives Understand the definition of a parametric surface, and sketch the surface. Find a set of parametric equations to represent a surface. Find a normal vector and a tangent plane to a parametric surface. Find the area of a parametric surface.

Parametric Surfaces

Parametric Surfaces You already know how to represent a curve in the plane or in space by a set of parametric equations—or, equivalently, by a vector-valued function. r(t) = x(t)i + y(t)j Plane curve r(t) = x(t)i + y(t)j + z(t)k Space curve In this section, you will learn how to represent a surface in space by a set of parametric equations—or by a vector-valued function. For curves, note that the vector-valued function r is a function of a single parameter t. For surfaces, the vector-valued function is a function of two parameters u and v.

Parametric Surfaces

Parametric Surfaces If S is a parametric surface given by the vector-valued function r, then S is traced out by the position vector r(u, v) as the point (u, v) moves throughout the domain D, as shown in Figure 15.35. Figure 15.35

Example 1 – Sketching a Parametric Surface Identify and sketch the parametric surface S given by r(u, v) = 3 cos ui + 3 sin uj + vk where 0  u  2 and 0  v  4. Solution: Because x = 3 cos u and y = 3 sin u, you know that for each point (x, y, z) on the surface, x and y are related by the equation x2 + y2 = 32.

Example 1 – Solution cont’d In other words, each cross section of S taken parallel to the xy-plane is a circle of radius 3, centered on the z-axis. Because z = v, where 0  v  4, you can see that the surface is a right circular cylinder of height 4. The radius of the cylinder is 3, and the z-axis forms the axis of the cylinder, as shown in Figure 15.36. Figure 15.36

Finding Parametric Equations for Surfaces

Finding Parametric Equations for Surfaces In Example 1, you were asked to identify the surface described by a given set of parametric equations. The reverse problem—that of writing a set of parametric equations for a given surface—is generally more difficult. One type of surface for which this problem is straightforward, however, is a surface that is given by z = f(x, y). You can parametrize such a surface as r(x, y) = xi + yj + f(x, y)k.

Example 3 – Representing a Surface Parametrically Write a set of parametric equations for the cone given by as shown in Figure 15.38. Figure 15.38

Example 3 – Solution Because this surface is given in the form z = f(x, y), you can let x and y be the parameters. Then the cone is represented by the vector-valued function where (x, y) varies over the entire xy-plane.

Finding Parametric Equations for Surfaces A second type of surface that is easily represented parametrically is a surface of revolution. For instance, to represent the surface formed by revolving the graph of y = f(x), a  x  b, about the x-axis, use x = u, y = f(u) cos v, and z = f(u) sin v where a  u  b and 0  v  2.

Use the parameters u and v as described above to write Example 4 – Representing a Surface of Revolution Parametrically Write a set of parametric equations for the surface of revolution obtained by revolving about the x-axis. Solution: Use the parameters u and v as described above to write x = u, y = f(u) cos v = cos v, and z = f(u) sin v = sin v where 1  u  10 and 0  v  2.

Example 4 – Solution cont’d The resulting surface is a portion of Gabriel’s Horn, as shown in Figure 15.39. Figure 15.39

Normal Vectors and Tangent Planes

Normal Vectors and Tangent Planes Let S be a parametric surface given by r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k over an open region D such that x, y, and z have continuous partial derivatives on D. The partial derivatives of r with respect to u and v are defined as and Each of these partial derivatives is a vector-valued function that can be interpreted geometrically in terms of tangent vectors.

Normal Vectors and Tangent Planes For instance, if v = v0 is held constant, then r(u, v0) is a vector-valued function of a single parameter and defines a curve C1 that lies on the surface S. The tangent vector to C1 at the point (x(u0, v0), y(u0, v0), z(u0, v0)) is given by as shown in Figure 15.40. Figure 15.40

Normal Vectors and Tangent Planes In a similar way, if u = u0 is held constant, then r(u0, v) is a vector-valued function of a single parameter and defines a curve C2 that lies on the surface S. The tangent vector to C2 at the point (x(u0, v0), y(u0, v0), z(u0, v0)) is given by If the normal vector ru  rv is not 0 for any (u, v) in D, the surface S is called smooth and will have a tangent plane.

Normal Vectors and Tangent Planes

Find an equation of the tangent plane to the paraboloid given by Example 5 – Finding a Tangent Plane to a Parametric Surface Find an equation of the tangent plane to the paraboloid given by r(u, v) = ui + vj + (u2 + v2)k at the point (1, 2, 5). Solution: The point in the uv-plane that is mapped to the point (x, y, z) = (1, 2, 5) is (u, v) = (1, 2). The partial derivatives of r are ru = i + 2uk and rv = j + 2vk.

Example 5 – Solution The normal vector is given by cont’d The normal vector is given by ru  rv = = –2ui – 2vj + k which implies that the normal vector at (1, 2, 5) is ru  rv = –2i – 4j + k. So, an equation of the tangent plane at (1, 2, 5) is –2(x – 1) – 4(y – 2) + (z – 5) = 0 –2x – 4y + z = –5.

Example 5 – Solution The tangent plane is shown in Figure 15.41. cont’d The tangent plane is shown in Figure 15.41. Figure 15.41

Area of a Parametric Surface

Area of a Parametric Surface To define the area of a parametric surface, begin by constructing an inner partition of D consisting of n rectangles, where the area of the i th rectangle Di is ∆Ai = ∆ui ∆vi, as shown in Figure 15.42. Figure 15.42

Area of a Parametric Surface In each Di let (ui, vi) be the point that is closest to the origin. At the point (xi, yi, zi) = (x(ui, vi), y(ui, vi), z(ui, vi)) on the surface S, construct a tangent plane Ti . The area of the portion of S that corresponds to Di, ∆Ti, can be approximated by a parallelogram in the tangent plane. That is, ∆Ti  ∆Si. So, the surface of S is given by  ∆Si   ∆Ti.

Area of a Parametric Surface The area of the parallelogram in the tangent plane is ∆uiru  ∆virv = ru  rv ∆ui∆vi which leads to the following definition.

Area of a Parametric Surface To see a surface S given by z = f(x, y), you can parametrize the surface using the vector-valued function r(x, y) = xi + yj + f(x, y)k defined over the region R in the xy-plane. Using rx = i + fx(x, y)k and ry = j + fy(x, y)k you have rx  ry = = –fx(x, y)i – fy(x, y)j + k and rx  ry =

Area of a Parametric Surface This implies that the surface area of S is Surface area

Example 6 – Finding Surface Area Find the surface area of the unit sphere given by r(u, v) = sin u cos vi + sin u sin vj + cos uk where the domain D is given by 0  u   and 0  v  2. Solution: Begin by calculating ru and rv. ru = cos u cos vi + cos u sin vj – sin uk rv = –sin u sin vi + sin u cos vj

Example 6 – Solution The cross product of these two vectors is cont’d The cross product of these two vectors is ru  rv = = sin2 u cos vi + sin2 u sin vj + sin u cos uk which implies that ru  rv sin u > 0 for 0  u  

Example 6 – Solution cont’d Finally, the surface area of the sphere is