Symbolic Logic: The Language of Modern Logic

Slides:



Advertisements
Similar presentations
Logic The study of correct reasoning.
Advertisements

Geometry Logic.
TRUTH TABLES Section 1.3.
TRUTH TABLES The general truth tables for each of the connectives tell you the value of any possible statement for each of the connectives. Negation.
Chapter 3 section 2. Please form your groups The 1 st column represents all possibilities for the statement that can be either True or False. The 2 nd.
Logic & Critical Reasoning Translation into Propositional Logic.
Truth Tables Presented by: Tutorial Services The Math Center.
Chapter Two Symbolizing in Sentential Logic This chapter is a preliminary to the project of building a model of validity for sentential arguments. We.
1. Propositions A proposition is a declarative sentence that is either true or false. Examples of propositions: The Moon is made of green cheese. Trenton.
Goals Determine the true value of statements with AND, OR, IF..THEN. Negate statements with the connectives above Construct truth tables Understand when.
Symbolic Logic: Conjunction • , Negation ~, Disjunction v
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 3.2 Truth Tables for Negation, Conjunction, and Disjunction.
DEDUCTIVE REASONING: PROPOSITIONAL LOGIC Purposes: To analyze complex claims and deductive argument forms To determine what arguments are valid or not.
Logic Chapter 2. Proposition "Proposition" can be defined as a declarative statement having a specific truth-value, true or false. Examples: 2 is a odd.
An Introduction to Propositional Logic Translations: Ordinary Language to Propositional Form.
1 Math 306 Foundations of Mathematics I Math 306 Foundations of Mathematics I Goals of this class Introduction to important mathematical concepts Development.
Tweedledum: “I know what you’re thinking, but it isn’t so. No how.” Tweedledee: “Contrariwise, if it was so, it might be; and if it were so, it would be;
The Language of Propositional Logic The Syntax and Semantics of PL.
Copyright © Cengage Learning. All rights reserved.
Chapter 2: The Logic of Compound Statements 2.1 Logical Forms and Equivalence 12.1 Logical Forms and Equivalences Logic is a science of the necessary laws.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 3.2 Truth Tables for Negation, Conjunction, and Disjunction.
Lecture 8 Introduction to Logic CSCI – 1900 Mathematics for Computer Science Fall 2014 Bill Pine.
Conjunctions, Disjunctions, and Negations Symbolic Logic 2/12/2001.
The Foundations: Logic and Proofs
Intro to Discrete Structures
Section 1-4 Logic Katelyn Donovan MAT 202 Dr. Marinas January 19, 2006.
Course Outline Book: Discrete Mathematics by K. P. Bogart Topics:
Discrete Mathematics and Its Applications
Lecture for Week Spring.   Introduction to Propositional Logic  Types of Proposition  Operator and Truth table Agenda.
CS 285- Discrete Mathematics Lecture 2. Section 1.1 Propositional Logic Propositions Conditional Statements Truth Tables of Compound Propositions Translating.
Chapter 1 The Logic of Compound Statements. Section 1.1 Logical Form and Logical Equivalence.
BY: MISS FARAH ADIBAH ADNAN IMK. CHAPTER OUTLINE: PART III 1.3 ELEMENTARY LOGIC INTRODUCTION PROPOSITION COMPOUND STATEMENTS LOGICAL.
A Modern Logician Said: By the aid of symbolism, we can make transitions in reasoning almost mechanically by eye, which otherwise would call into play.
1 Propositional Logic Proposition 2 Propositions can be divided into simple propositions and compound propositions. A simple (or basic) proposition is.
MATH 102 Contemporary Math S. Rook
Math 240: Transition to Advanced Math Deductive reasoning: logic is used to draw conclusions based on statements accepted as true. Thus conclusions are.
Logical Form and Logical Equivalence Lecture 2 Section 1.1 Fri, Jan 19, 2007.
Symbolic Language and Basic Operators Kareem Khalifa Department of Philosophy Middlebury College.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Objectives 1. Statements, quantifiers, and compound statements 2. Statements involving the words not,
Discrete Mathematics Lecture1 Miss.Amal Alshardy.
Logic Disjunction A disjunction is a compound statement formed by combining two simple sentences using the word “OR”. A disjunction is true when at.
LOGIC Lesson 2.1. What is an on-the-spot Quiz  This quiz is defined by me.  While I’m having my lectures, you have to be alert.  Because there are.
Chapter 3: Introduction to Logic. Logic Main goal: use logic to analyze arguments (claims) to see if they are valid or invalid. This is useful for math.
MLS 570 Critical Thinking Reading Notes for Fogelin: Propositional Logic Fall Term 2006 North Central College.
Chapter 8 – Symbolic Logic Professor D’Ascoli. Symbolic Logic Because the appraisal of arguments is made difficult by the peculiarities of natural language,
How do I show that two compound propositions are logically equivalent?
Thinking Mathematically
Logic. Statements, Connectives, and Quantifiers In symbolic logic, we only care whether statements are true or false – not their content. In logic, a.
Logical Form and Logical Equivalence Lecture 1 Section 1.1 Wed, Jan 12, 2005.
1 Propositional Logic Introduction. 2 What is propositional logic? Propositional Logic is concerned with propositions and their interrelationships. 
Section 1.1. Section Summary Propositions Connectives Negation Conjunction Disjunction Implication; contrapositive, inverse, converse Biconditional Truth.
TRUTH TABLES. Introduction The truth value of a statement is the classification as true or false which denoted by T or F. A truth table is a listing of.
Chapter 7 Evaluating Deductive Arguments II: Truth Functional Logic Invitation to Critical Thinking First Canadian Edition.
Section 1.1 Propositions and Logical Operations. Introduction Remember that discrete is –the study of decision making in non-continuous systems. That.
Invitation to Critical Thinking Chapter 7 Lecture Notes Chapter 7.
رياضيات متقطعة لعلوم الحاسب MATH 226. Text books: (Discrete Mathematics and its applications) Kenneth H. Rosen, seventh Edition, 2012, McGraw- Hill.
TRUTH TABLES Edited from the original by: Mimi Opkins CECS 100 Fall 2011 Thanks for the ppt.
 Statement - sentence that can be proven true or false  Truth value – true or false  Statements are often represented using letters such as p and q.
Chapter 1. Chapter Summary  Propositional Logic  The Language of Propositions (1.1)  Logical Equivalences (1.3)  Predicate Logic  The Language of.
Section 3.2: Truth Tables for Negation, Conjunction, and Disjunction
Sentential logic. Lecture based on: Graeme Forbes, Modern Logic Katarzyna Paprzycka, online lectures.
Discrete Structures for Computer Science Presented By: Andrew F. Conn Slides adapted from: Adam J. Lee Lecture #1: Introduction, Propositional Logic August.
Presented by: Tutorial Services The Math Center
AND.
Truth Tables for Negation, Conjunction, and Disjunction
Symbolic Language and Basic Operators
The Boolean Connectives
Symbolic logic Modern logic.
CHAPTER 3 Logic.
Truth tables.
Presentation transcript:

Symbolic Logic: The Language of Modern Logic Technique for analysis of deductive arguments English (or any) language: can make any argument appear vague, ambiguous; especially with use of things like metaphors, idioms, emotional appeals, etc. Avoid these difficulties to move into logical heart of argument: use symbolic language Now can formulate an argument with precision Symbols facilitate our thinking about an argument These are called “logical connectives”

Logical Connectives The relations between elements that every deductive argument must employ Helps us focus on internal structure of propositions and arguments We can translate arguments from sentences and propositions into symbolic logic form “Simple statement”: does not contain any other statement as a component “Charlie is neat” “Compound statement”: does contain another statement as a component “Charlie is neat and Charlie is sweet”

Conjunction Conjunction of two statements: “…and…” Each statement is called a conjunct “Charlie is neat” (conjunct 1) “Charlie is sweet” (conjunct 2) The symbol for conjunction is a dot • (Can also be “&”) p • q P and q (2 conjuncts)

Truth Values Truth value: every statement is either T or F; the truth value of a true statement is true; the truth value of a false statement is false

Truth Values of Conjunction Truth value of conjunction of 2 statements is determined entirely by the truth values of its two conjuncts A conjunction statement is truth-functional compound statement Therefore our symbol “•” (or “&”) is a truth-functional connective

Truth Table of Conjunction • Given any two statements, p and q p q p • q T F A conjunction is true if and only if both conjuncts are true

Abbreviation of Statements “Charlie’s neat and Charlie’s sweet.” N • S Dictionary: N=“Charlie’s neat” S=“Charlie’s sweet” Can choose any letter to symbolize each conjunct, but it is best to choose one relating to the content of that conjunct to make your job easier “Byron was a great poet and a great adventurer.” P • A “Lewis was a famous explorer and Clark was a famous explorer.” L • C

“Jones entered the country at New York and went straight to Chicago.” “and” here does not signify a conjunction Can’t say “Jones went straight to Chicago and entered the country at New York.” Therefore cannot use the • here Some other words that can signify conjunction: But Yet Also Still However Moreover Nevertheless (comma) (semicolon)

Negation Negation: contradictory or denial of a statement “not” i.e. “It is not the case that…” The symbol for negation is tilde ~ If M=“All humans are mortal,” then ~M=“It is not the case that all humans are mortal.” ~M=“Some humans are not mortal.” ~M=“Not all humans are mortal.” ~M=“It is false that all humans are mortal.” All these can be symbolized with ~M

Truth Table for Negation Where p is any statement, its negation is ~p p ~p T F

Disjunction Disjunction of two statements: “…or…” Symbol is “ v ” (wedge) (i.e. A v B = A or B) Weak (inclusive) sense: can be either case, and possibly both Ex. “Salad or dessert” (well, you can have both) We will treat all disjunctions in this sense (unless a problem explicitly says otherwise) Strong (exclusive) sense: one and only one Ex. “A or B” (you can have A or B, at least one but not both) The two component statements so combined are called “disjuncts”

Disjunction Truth Table p q p v q T F A (weak) disjunction is false only in the case that both its disjuncts are false

Disjunction Translate: “You will do poorly on the exam unless you study.” P=“You will do poorly on the exam.” S=“You study.” P v S “Unless” = v

Punctuation As in mathematics, it is important to correctly punctuate logical parts of an argument Ex. (2x3)+6 = 12 whereas 2x(3+6)= 18 Ex. p • q v r (this is ambiguous) To avoid ambiguity and make meaning clear Make sure to order sets of parentheses when necessary: Example: { A • [(B v C) • (C v D)] } • ~E { [ ( ) ] }

Punctuation “Either Fillmore or Harding was the greatest American president.” F v H To say “Neither Fillmore nor Harding was the greatest American president.” (the negation of the first statement) ~(F v H) OR (~F) • (~H)

Punctuation “Jamal and Derek will both not be elected.” ~J • ~D In any formula the negation symbol will be understood to apply to the smallest statement that the punctuation permits i.e. above is NOT taken to mean “~[J • (~D)]” “Jamal and Derek both will not be elected.” ~(J •D)

Example Rome is the capital of Italy or Rome is the capital of Spain. I=“Rome is the capital of Italy” S=“Rome is the capital of Spain” I v S Now that we have the logical formula, we can use the truth tables to figure out the truth value of this statement When doing truth values, do the innermost conjunctions/disjunctions/negations first, working your way outwards

I v S We know that Rome is the capital of Italy and that Rome is not the capital of Spain. So we know that “I” is True, and that “S” is False. We put these values directly under their corresponding letter I v S T F We know that for a disjunction, if at least one of the disjuncts is T, this is enough to make the whole disjunction T We put this truth value (that of the whole disjunction) under the v (wedge) I v S T F

Note When doing truth values, do the innermost conjunctions/disjunctions/negations first, working your way outwards Ex. Do ( ) first, then [ ], then finally { } Homework: Page 309-310 Part I (try 5 of these) Page 310 Part II (try 10 of these)