Mesh Parameterization: Theory and Practice Setting the Boundary Free Mesh Parameterization: Theory and Practice Setting the Boundary Free Bruno Lévy -

Slides:



Advertisements
Similar presentations
Signal-Specialized Parametrization Microsoft Research 1 Harvard University 2 Microsoft Research 1 Harvard University 2 Steven J. Gortler 2 Hugues Hoppe.
Advertisements

Texture-Mapping Progressive Meshes
Multi-chart Geometry Images Pedro Sander Harvard Harvard Hugues Hoppe Microsoft Research Hugues Hoppe Microsoft Research Steven Gortler Harvard Harvard.
Course Evaluations 4 Random Individuals will win an ATI Radeon tm HD2900XT.
1 Modal methods for 3D heterogeneous neutronics core calculations using the mixed dual solver MINOS. Application to complex geometries and parallel processing.
Wei Zeng Joseph Marino Xianfeng Gu Arie Kaufman Stony Brook University, New York, USA The MICCAI 2010 Workshop on Virtual Colonoscopy and Abdominal Imaging.
2D/3D Shape Manipulation, 3D Printing
Developable Surface Fitting to Point Clouds Martin Peternell Computer Aided Geometric Design 21(2004) Reporter: Xingwang Zhang June 19, 2005.
CSE554Extrinsic DeformationsSlide 1 CSE 554 Lecture 9: Extrinsic Deformations Fall 2012.
SGP 2008 A Local/Global Approach to Mesh Parameterization Ligang Liu Lei Zhang Yin Xu Zhejiang University, China Craig Gotsman Technion, Israel Steven.
Geometry Image Xianfeng Gu, Steven Gortler, Hugues Hoppe SIGGRAPH 2002 Present by Pin Ren Feb 13, 2003.
Mesh Parameterization: Theory and Practice Differential Geometry Primer.
Siggraph Course Mesh Parameterization: Theory and Practice
Discrete Exterior Calculus. More Complete Introduction See Chapter 7 “Discrete Differential Forms for Computational Modeling” in the SIGGRAPH 2006 Discrete.
3D Surface Parameterization Olga Sorkine, May 2005.
Non-Rigid Registration of 3D Surface by Deformable 2D Triangular Meshes Speaker:James Chang.
Xianfeng Gu, Yaling Wang, Tony Chan, Paul Thompson, Shing-Tung Yau
Consistent Spherical Parameterization Arul Asirvatham, Emil Praun (University of Utah) Hugues Hoppe (Microsoft Research)
Lapped Textures Emil Praun and Adam Finkelstien (Princeton University) Huges Hoppe (Microsoft Research) SIGGRAPH 2000 Presented by Anteneh.
Siggraph Course Mesh Parameterization: Theory and Practice Barycentric Mappings.
Reverse Engineering Niloy J. Mitra.
Signal-Specialized Parameterization for Piecewise Linear Reconstruction Geetika Tewari, Harvard University John Snyder, Microsoft Research Pedro V. Sander,
Signal-Specialized Parametrization Microsoft Research 1 Harvard University 2 Microsoft Research 1 Harvard University 2 Steven J. Gortler 2 Hugues Hoppe.
Spherical Parameterization and Remeshing Emil Praun, University of Utah Hugues Hoppe, Microsoft Research.
Invariant correspondence
Iso-charts: Stretch-driven Mesh Parameterization using Spectral Analysis Kun Zhou, John Snyder*, Baining Guo, Heung-Yeung Shum Microsoft Research Asia.
Bounded-distortion Piecewise Mesh Parameterization
CS CS 175 – Week 7 Parameterization Linear Methods.
Correspondence & Symmetry
1 Numerical geometry of non-rigid shapes Spectral Methods Tutorial. Spectral Methods Tutorial 6 © Maks Ovsjanikov tosca.cs.technion.ac.il/book Numerical.
Real-time Combined 2D+3D Active Appearance Models Jing Xiao, Simon Baker,Iain Matthew, and Takeo Kanade CVPR 2004 Presented by Pat Chan 23/11/2004.
Mesh Parameterization: Theory and Practice Barycentric Mappings.
1 Dr. Scott Schaefer Surface Parameterization. Parameterization and Texturing 2/30.
CS CS 175 – Week 7 Parameterization Boundary, Non-Linear, and Global Methods.
Invariant Correspondence
Part Two Multiresolution Analysis of Arbitrary Meshes M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, W. Stuetzle SIGGRAPH 95.
Consistent Parameterizations Arul Asirvatham Committee Members Emil Praun Hugues Hoppe Peter Shirley.
Regularized meshless method for solving the Cauchy problem Speaker: Kuo-Lun Wu Coworker : Kue-Hong Chen 、 Jeng-Tzong Chen and Jeng-Hong Kao 以正規化無網格法求解柯西問題.
Desingularized meshless method for solving the Cauchy problem Speaker: Kuo-Lun Wu Coworker : Kue-Hong Chen 、 Jeng-Tzong Chen and Jeng-Hong Kao 以去奇異無網格法求解柯西問題.
SVD(Singular Value Decomposition) and Its Applications
Projective Texture Atlas for 3D Photography Jonas Sossai Júnior Luiz Velho IMPA.
INTECH’ April, the 28 th 2005 Mesh Parameterization Bruno Lévy, INRIA, project ALICE INTECH’ April, the 28 th 2005 Mesh Parameterization Bruno Lévy, INRIA,
Parameterization.
Intrinsic Parameterization for Surface Meshes Mathieu Desbrun, Mark Meyer, Pierre Alliez CS598MJG Presented by Wei-Wen Feng 2004/10/5.
Computer Graphics Group Tobias Weyand Mesh-Based Inverse Kinematics Sumner et al 2005 presented by Tobias Weyand.
Signal-Specialized Parameterization for Piecewise Linear Reconstruction Geetika Tewari, Harvard University John Snyder, Microsoft Research Pedro V. Sander,
Modal Shape Analysis beyond Laplacian (CAGP 2012) Klaus Hildebrandt, Christian Schulz, Christoph von Tycowicz, Konrad Polthier (brief) Presenter: ShiHao.Wu.
1 Mesh Parametrization and Its Applications 동의대학교 멀티미디어공학과 김형석 포항공과대학교 ( 이윤진, 이승용 )
Texture Mapping by Model Pelting and Blending
Mesh Deformation Based on Discrete Differential Geometry Reporter: Zhongping Ji
SIGGRAPH 2010 “Spectral Mesh Processing” Bruno Lévy and Richard Hao Zhang.
C GasparAdvances in Numerical Algorithms, Graz, Fast interpolation techniques and meshless methods Csaba Gáspár Széchenyi István University, Department.
Computer Graphics Some slides courtesy of Pierre Alliez and Craig Gotsman Texture mapping and parameterization.
Procrustes Analysis and Its Application in Computer Graphics Speaker: Lei Zhang 2008/10/08.
Spectral surface reconstruction Reporter: Lincong Fang 24th Sep, 2008.
Extraction and remeshing of ellipsoidal representations from mesh data Patricio Simari Karan Singh.
Geometric Modeling using Polygonal Meshes Lecture 3: Discrete Differential Geometry and its Application to Mesh Processing Office: South B-C Global.
David Levin Tel-Aviv University Afrigraph 2009 Shape Preserving Deformation David Levin Tel-Aviv University Afrigraph 2009 Based on joint works with Yaron.
Section 15.6 Directional Derivatives and the Gradient Vector.
Partial Derivatives Example: Find If solution: Partial Derivatives Example: Find If solution: gradient grad(u) = gradient.
ECCV Tutorial Mesh Processing Discrete Exterior Calculus
Recent Progress in Mesh Parameterization Speaker : ZhangLei.
Reverse Engineering of Point Clouds to Obtain Trimmed NURBS Lavanya Sita Tekumalla Advisor: Prof. Elaine Cohen School of Computing University of Utah Masters.
Rongjie Lai University of Southern California Joint work with: Jian Liang, Alvin Wong, Hongkai Zhao 1 Geometric Understanding of Point Clouds using Laplace-Beltrami.
Practical 3D Frame Field Generation
Morphing and Shape Processing
You can check broken videos in this slide here :
Spectral Methods Tutorial 6 1 © Maks Ovsjanikov
Mesh Parameterization: Theory and Practice
1st semester a.y. 2018/2019 – November 22, 2018
Presentation transcript:

Mesh Parameterization: Theory and Practice Setting the Boundary Free Mesh Parameterization: Theory and Practice Setting the Boundary Free Bruno Lévy - INRIA

Overview 1. Introduction - Motivations 2. Using differential geometry 3. Analytic methods 4. Conclusion

1. Introduction Setting the bndy free, why ? n Floater-Tutte: provably correct result for fixed convex boundary for fixed convex boundary

1. Introduction Seamster [Sheffer et.al] Cuts the model, ready for "pelting"

1. Introduction Fixed boundary - distortion

1. Introduction Free boundary - better result

1. Introduction Why is this important ? Demo: Normal mapping

2. Using Differential Geometry... to minimize deformations Q1) How can we compare these two mappings ? Q2) How can we design an algorithm that prefers B ? A B

2. Using Differential Geometry... to minimize deformations n [Greiner et.al]: Variational principles for geometric modeling with Splines PDEs for geometric optimization Can we port this principle to the discrete setting ?

2. Using Differential Geometry... to minimize deformations n [Hormann and Greiner] MIPS n [Pinkall and Poltier] cotan formula [Do Carmo] for meshes

2. Using Differential Geometry Notion of parameterization x (.,.) u v  RI 3 RI 2 S Object space (3D) Texture space (2D) u(x,y,z) x(u,v)

2. Geometry of T p (S) Partial derivatives of x (.,. ) v u uu vv x/ux/u x/vx/v P T P (S)

2. Geometry of T p (S) Differential dx P ; directional derivatives u 0,v 0 P w dxP(w)dxP(w) dx P (w) =  /  t ( x ( (u 0,v 0 )+ t.w ) ) )

2. Geometry of T p (S) Jacobian Matrix J P JP =JP = x/ux/u y/uy/u z/uz/u x/vx/v y/vy/v z/vz/v [ ] x/ux/u x/vx/v P dxP(w)dxP(w) uu vv w dx P (w) = w u  x/  u + w v  x/  v = J P.w u 0,v 0

2. Geometry of T p (S) Measuring things, First Fundamental Form I p T P (S) V 1 = dx p (w 1 ) ; V 2 = dx p (w 2 ) u v V 1 t V 2 = (J w 1 ) t J w 2 = w 1 t J t J w 2 = w 1 t I p w 2 V1V1 V2V2 w1w1 w2w2

2. Geometry of T p (S) Measuring things, First Fundamental Form I p Distances : || V 1 || 2 = w 1 t I p w 1 Angles : V 1 t V 2 = w 1 t I p w 2 I p is called the metric tensor

2. Geometry of T p (S) Anisotropy u v dv du  x x  x x  u u  u u  x x  x x  v v  v v T P (S) r 2 (  ) = || dx P ( cos , sin  ) || 2

2. Geometry of T p (S) Anisotropy ; 1 st fundamental form I P || dx P (w) || 2 = || J P.w || 2 = (J P w).(J P w) t = w t.J P t.J P.w = w t.I P.w IP =IP = IP =IP =  x x  x x  u u  u u 2 2  x x  x x  v v  v v 2 2  x x  x x  u u  u u  x x  x x  v v  v v  x x  x x  u u  u u  x x  x x  v v  v v

2. Geometry of T p (S) Anisotropy ; 1 st fundamental form I P a a b b r 2 (  ) = || dx P ( cos  w 1 + sin  w  ) || 2 = (cos .w 1 + sin .w 2 ) t.I p.(cos .w 1 + sin .w 2 ) = cos 2 .||w 1 || sin 2 .||w 2 || sin . cos  ( 1.w t 2.w w t 1.w 2 ) w 1, w 2 unit eigen vectors of Ip 1, 2 associated eigen values r 2 (  )= cos 2 . 1 + sin 2 . 2

2. Geometry of T p (S) Anisotropy ; eigen structure of I P a a b b a = 1 ; b = 2 (eigen values of I p ) IP =IP = IP =IP =  x x  x x  u u  u u 2 2  x x  x x  v v  v v 2 2  x x  x x  u u  u u  x x  x x  v v  v v  x x  x x  u u  u u  x x  x x  v v  v v

2. Geometry of T p (S) Anisotropy ; eigen structure of I P a a b b J p =  x x  x x  u u  u u  x x  x x  v v  v v  y y  y y  u u  u u  y y  y y  v v  v v  z z  z z  u u  u u  z z  z z  v v  v v = U V t a 0 0 b 0 0 a 0 0 b 0 0 Singular values decomposition (SVD) of J Rem: I p = J t.J a = 1 ; b = 2

RI 3 RI 2 u v PiPi PiPi u i,v i 2. Using Differential Geometry Triangulated surfaces Object space (3D) Texture space (2D)

2. Using Differential Geometry Triangulated Surfaces X X Y Y u u v v

2. Using Differential Geometry Anisotropy - See Kai's diff. geo. primer n first fundamental form n eigenvalues of n singular values of (anisotropy ellipse axes)

3. Analytic methods General Principle Define some energy functional F in function of J p, I p, 1, 2 Define some energy functional F in function of J p, I p, 1, 2 n Expand their expression in F in function of the unknown u i, v i n Design an algorithm to find the u i,v i 's that minimizes F

3. Analytic methods 3. Analytic methods [Maillot, Yahia & Verroust, 1993] The first fundamental form I is the metric tensor Minimize a matrix norm of I - Id

3. Analytic methods MIPS [Hormann et. al] [Hormann & Greiner] Principle: F should be invariant by similarity and shoud punish collapsing triangles and shoud punish collapsing triangles

3. Analytic methods Stretch optimization [Sander et.al] r 2 (  ) =  dx p (w(  ))  2 = || dx P ( cos , sin  ) || 2 u v w(  ) T P (S) dx P ( w(  ) ) Stretch L 2 = 1/2  ∫ r 2 (  )d  L ∞ = max ( r(  ) )

3. Analytic methods Stretch optimization [Sander et.al]

3. Analytic Methods Conformal Parameterization  x x  x x  u u  u u  x x  x x  v v  v v  x x  x x  v v  v v  x x  x x  u u  u u ^ ^ N N = = 2 = 1

u u v v x x y y  u u  u u  x x  x x = =  v v  v v  y y  y y  u u  u u  y y  y y = -  v v  v v  x x  x x   Cauchy-Riemann: 3. Analytic Methods Conformal Parameterization No Piecewise Linear solution in general

3. Analytic Methods LSCM [Levy et.al] Minimize2  u u  u u  x x  x x  v v  v v  y y  y y  u u  u u  y y  y y - -  v v  v v  x x  x x -  T Fix two vertices to determine rot,transl,scaling + easy to implement - overlaps, deformations

3. Analytic Methods DNCP [Desbrun et.al] Tutte-Floater with harmonic weights (cotan) + additional equation for natural boundaries Bndry point i, grad of Dirichlet energy Natural idea for "setting the bndry free" (Laplace eqn with Neumman bndry)

Isotropic Parameterizations Conformal = Harmonic E C ( u ) + A u (T) = E D ( u )   E D ( u ) = ½. | u | 2 Dirichlet Energy A u (T) = det(J u ) Area of T E C (u) = ½. || D 90 (  u) -  v || 2 where: Conformal Energy [Douglas31] [Rado30] [Courant50] [Brakke90]

Application of free boundaries Show 2D domain Segmentation: VSA [Alliez et.al]

Epilogue Limits of analytic methods distortions ; validity Geometric methods LSCM ; DNCP

Resources n Source code & papers on on – Graphite – OpenNL

Calls for papers n Eurographics 2008 –Abstracts: Sept 21, papers: Sept 26 n SPM / SPMI 2008 –Abstracts: Nov 27, papers: Dec 4 n SGP 2008 –Abstracts: April 20, papers: April 27 n Special issue Computing - eigenfunctions –Abstracts: Nov 1st, Papers: Nov, 15 Paper copies of CfP available, ask us !

Course Evaluations 4 Random Individuals will win an ATI Radeon tm HD2900XT