Lower Bound for Sparse Euclidean Spanners Presented by- Deepak Kumar Gupta(Y6154), Nandan Kumar Dubey(Y6279), Vishal Agrawal(Y6541)

Slides:



Advertisements
Similar presentations
Routing Complexity of Faulty Networks Omer Angel Itai Benjamini Eran Ofek Udi Wieder The Weizmann Institute of Science.
Advertisements

Lower Bounds for Additive Spanners, Emulators, and More David P. Woodruff MIT and Tsinghua University To appear in FOCS, 2006.
Lecture 15. Graph Algorithms
Algorithmic Mechanism Design: an Introduction VCG-mechanisms for some basic network optimization problems: The Minimum Spanning Tree problem Guido Proietti.
Analysis of Algorithms CS 477/677
Weighted graphs Example Consider the following graph, where nodes represent cities, and edges show if there is a direct flight between each pair of cities.
O(N 1.5 ) divide-and-conquer technique for Minimum Spanning Tree problem Step 1: Divide the graph into  N sub-graph by clustering. Step 2: Solve each.
Comments We consider in this topic a large class of related problems that deal with proximity of points in the plane. We will: 1.Define some proximity.
 Distance Problems: › Post Office Problem › Nearest Neighbors and Closest Pair › Largest Empty and Smallest Enclosing Circle  Sub graphs of Delaunay.
Lecture 24 Coping with NPC and Unsolvable problems. When a problem is unsolvable, that's generally very bad news: it means there is no general algorithm.
IKI 10100: Data Structures & Algorithms Ruli Manurung (acknowledgments to Denny & Ade Azurat) 1 Fasilkom UI Ruli Manurung (Fasilkom UI)IKI10100: Lecture10.
1 Minimum Spanning Tree Prim-Jarnik algorithm Kruskal algorithm.
Graphs Chapter 12. Chapter Objectives  To become familiar with graph terminology and the different types of graphs  To study a Graph ADT and different.
More Graph Algorithms Minimum Spanning Trees, Shortest Path Algorithms.
Graph Algorithms: Minimum Spanning Tree We are given a weighted, undirected graph G = (V, E), with weight function w:
Chapter 9 Graph algorithms. Sample Graph Problems Path problems. Connectedness problems. Spanning tree problems.
3 -1 Chapter 3 The Greedy Method 3 -2 The greedy method Suppose that a problem can be solved by a sequence of decisions. The greedy method has that each.
Greedy Algorithms Reading Material: Chapter 8 (Except Section 8.5)
Graphs Chapter 12. Chapter 12: Graphs2 Chapter Objectives To become familiar with graph terminology and the different types of graphs To study a Graph.
Spring 2010CS 2251 Graphs Chapter 10. Spring 2010CS 2252 Chapter Objectives To become familiar with graph terminology and the different types of graphs.
Chapter 9 Graph algorithms Lec 21 Dec 1, Sample Graph Problems Path problems. Connectedness problems. Spanning tree problems.
Dept. of Computer Science Distributed Computing Group Asymptotically Optimal Mobile Ad-Hoc Routing Fabian Kuhn Roger Wattenhofer Aaron Zollinger.
Greedy Algorithms Like dynamic programming algorithms, greedy algorithms are usually designed to solve optimization problems Unlike dynamic programming.
Introduction Outline The Problem Domain Network Design Spanning Trees Steiner Trees Triangulation Technique Spanners Spanners Application Simple Greedy.
The Shortest Path Problem
Minimum Spanning Trees. Subgraph A graph G is a subgraph of graph H if –The vertices of G are a subset of the vertices of H, and –The edges of G are a.
Minimum Spanning Trees What is a MST (Minimum Spanning Tree) and how to find it with Prim’s algorithm and Kruskal’s algorithm.
Minimal Spanning Trees What is a minimal spanning tree (MST) and how to find one.
1 Introduction to Approximation Algorithms. 2 NP-completeness Do your best then.
© The McGraw-Hill Companies, Inc., Chapter 3 The Greedy Method.
Chapter 9 – Graphs A graph G=(V,E) – vertices and edges
Lecture 13 Graphs. Introduction to Graphs Examples of Graphs – Airline Route Map What is the fastest way to get from Pittsburgh to St Louis? What is the.
GRAPHS CSE, POSTECH. Chapter 16 covers the following topics Graph terminology: vertex, edge, adjacent, incident, degree, cycle, path, connected component,
7.1 and 7.2: Spanning Trees. A network is a graph that is connected –The network must be a sub-graph of the original graph (its edges must come from the.
GRAPH SPANNERS by S.Nithya. Spanner Definition- Informal A geometric spanner network for a set of points is a graph G in which each pair of vertices is.
CSE332: Data Abstractions Lecture 24.5: Interlude on Intractability Dan Grossman Spring 2012.
Graphs. Definitions A graph is two sets. A graph is two sets. –A set of nodes or vertices V –A set of edges E Edges connect nodes. Edges connect nodes.
Minimum spanning trees (MST) Def: A spanning tree of a graph G is an acyclic subset of edges of G connecting all vertices in G. A sub-forest of G is an.
Fundamental Data Structures and Algorithms (Spring ’05) Recitation Notes: Graphs Slides prepared by Uri Dekel, Based on recitation.
Lower Bound for Sparse Euclidean Spanners Presented by- Deepak Kumar Gupta(Y6154), Nandan Kumar Dubey(Y6279), Vishal Agrawal(Y6541)
Introduction to Graph Theory
Union-Find  Application in Kruskal’s Algorithm  Optimizing Union and Find Methods.
Graphs. Graphs Similar to the graphs you’ve known since the 5 th grade: line graphs, bar graphs, etc., but more general. Those mathematical graphs are.
Graphs A graphs is an abstract representation of a set of objects, called vertices or nodes, where some pairs of the objects are connected by links, called.
Graphs Chapter 12. Chapter 12: Graphs2 Chapter Objectives To become familiar with graph terminology and the different types of graphs To study a Graph.
GRAPHS. Graph Graph terminology: vertex, edge, adjacent, incident, degree, cycle, path, connected component, spanning tree Types of graphs: undirected,
Graphs Definition: a graph is an abstract representation of a set of objects where some pairs of the objects are connected by links. The interconnected.
NOTE: To change the image on this slide, select the picture and delete it. Then click the Pictures icon in the placeholder to insert your own image. Fast.
Spanning Tree Definition:A tree T is a spanning tree of a graph G if T is a subgraph of G that contains all of the vertices of G. A graph may have more.
Introduction Wireless Ad-Hoc Network  Set of transceivers communicating by radio.
Spanning Trees Dijkstra (Unit 10) SOL: DM.2 Classwork worksheet Homework (day 70) Worksheet Quiz next block.
Lecture 20. Graphs and network models 1. Recap Binary search tree is a special binary tree which is designed to make the search of elements or keys in.
Trees.
TU/e Algorithms (2IL15) – Lecture 11 1 Approximation Algorithms.
Minimum Spanning Trees
Shortest Paths and Minimum Spanning Trees
Minimum Spanning Trees
COMP 6/4030 ALGORITHMS Prim’s Theorem 10/26/2000.
MST in Log-Star Rounds of Congested Clique
Enumerating Distances Using Spanners of Bounded Degree
Connected Components Minimum Spanning Tree
GRAPH SPANNERS.
Graphs Chapter 13.
Introduction Wireless Ad-Hoc Network
Shortest Paths and Minimum Spanning Trees
Lecture 14 Shortest Path (cont’d) Minimum Spanning Tree
Minimum Spanning Trees (MSTs)
Lecture 13 Shortest Path (cont’d) Minimum Spanning Tree
Chapter 9 Graph algorithms
For Friday Read chapter 9, sections 2-3 No homework
Presentation transcript:

Lower Bound for Sparse Euclidean Spanners Presented by- Deepak Kumar Gupta(Y6154), Nandan Kumar Dubey(Y6279), Vishal Agrawal(Y6541)

Road Map Introduction To Spanners Algorithm to Construct Spanners  Outlier Algorithm  Properties of Spanners from this Algorithm Lower Bound for Sparse Euclidean Spanners  Introduction  Related Work  Terminologies  Proof(as presented in Paper) References

Introduction A t-spanner of a graph G is a spanning subgraph S in which the distance between every pair of vertices is at most t times their distance in G. The number k is the dilation or stretch factor. Given a set of points V = (v 1,v 2,v 3,…..,v n ) and a graph G(V,E). Define the weight of an edge e = (v i,v j ) as w(e).The weight of a graph G’(V’,E’) is defined as, w(G’) = Σ w(e i ) where e i Є E’. The shortest path between nodes v i and v j denoted by P G (v i,v j ) is the smallest weight path that connects v i and v j in G. The minimum link path, denoted by Π(v i,v j ) is the one with the smallest number of edges. Define the diameter of the graph as Δ(G) = max |Π(v i,v j )| where 1≤i,j ≤n A subgraph G’(V,E’) of G is a t-spanner of G if for any v i,v j Є V, W(P G’ (v i,v j )) / W(P G (v i,v j )) ≤ t

SPANNERS SPARSENESS : Let Weight (G) denote the sum of all edge weights of a n- vertex graph G Let Size (G) denote the number of edges in G. Then, A graph is sparse in size if it has a few edges. A graph is sparse in weight if its total edge weight is small. OBJECTIVE: To keep stretch factors constant.

Algorithm to Construct Spanners Input : A weighted graph G, A positive parameter r. The weights need not be unique. Output : A sub graph G’. ALGORITHM SPANNER(G(V,E),r) begin sort E by non-decreasing weight; Set G’ = (V,{ }). For every edge e = [u,v] in E do begin computer P(u,v), the shortest path from u to v in the current G’; If( r.Weight(e) < Weight(P(u,v))) then, add e to G’; end; output G’; end;

PROPERTIES The following Lemmas describe the properties of the output graph G’ G’ is a r-spanner of G. Let C be any simple cycle in G’,then size(C) > r+1. Let C be any simple cycle in G’ and let e be any edge in C, then Weight(C – {e}) > r.Weight(e) MST(G) is contained in G’.

Lemma1: G’ is a r-spanner of G. PROOF: On board PROPERTIES

Lemma2: Let C be any simple cycle in G’, then size(C) > r+1. PROOF: On board PROPERTIES

Lemma3: Let C be any simple cycle in G’ and let e be any edge in C, then Weight(C – {e}) > r.Weight(e). PROOF: On board PROPERTIES

Lemma4: MST(G) is contained in G’. PROPERTIES

Proof continued…

Abstract Given a one-dimensional graph G such that any two consecutive nodes are unit distance away, and such that the minimum number of links between any two nodes (the diameter of G) is O(log n), we prove an Ω(n log n / log log n) lower bound on the sum of lengths of all the edges (i.e., the weight of G). Lower Bound for Sparse Euclidean Spanners

 This one-dimensional graph problem is related to the partial sum problem, where given an array of numbers A[1],….,A[n], one would like to construct a data structure of small size so that a partial sum like S(i,j) = ΣA[k] where i≤ k ≤ j can be computed efficiently. Roughly speaking, the query time there corresponds to the diameter in our case, while the canonical sets usually constructed for the data structures there correspond to the edge set in our graphs. Related Work

Points V = (v 1,v 2,v 3,…..,v n ) is a set of n ordered points in R 1, such that any two consecutive points are unit distance apart. A block of nodes [i:j] is defined as = (v i, i+2,…..,v j ), and v i and v j are referred to as endpoints of the block. Let X(v k ) be the covering of a node v k, defined as the number of edges that span over v k, i.e., the number of edges (v i,v j ) such that i<k<j. Set X(G) = max X(v) where vЄV. Two edges (v i,v j ) and (v k,v l ) intersect if i<k<j<l. A graph is called a stack if it only contains non-intersecting edges. A cluster in a stack graph G is a maximal subgraph G’ = (V’,E’) induced by V’ = [i:j] such that edge (v i,v j ) Є E’, and no edge in E/E’ spans over any point in V’. Terminologies and Notation

PROOF(1) Lemma1: If X(n, δ) ≥ g(n), where g(n) is a concave function, then w(n, δ) = Ω(ng(n)). Proof: Let G = (V,E) be a with diameter δ, covering X(n, δ), and weight w(n, δ). Heavy node: X(v) ) ≥ g(n/6) Claim: |V h | ≥ n/2 (This implies the lemma) Proof by contradiction( on board ) Use g(n/k) ≥ g(n)/k for k>1 for concave function.

PROOF(2) The next lemma allows us to focus only on the covering and diameter of a stack graph. Lemma2: For any graph G = (V,E), there is a stack graph S = (V, ε) such that X(S) ≤ X(G) and Δ (S) ≤ (X(G)+1) Δ (G). Intuition: In order to obtain a stack graph, we wish to split an edge e if it intersects other edges. However, we have to do it in a way such that we do not introduce new intersections while removing an old one. Proof: In particular, given a graph G’ = (V’,E’), where V’ = [i:j] is a block of nodes from V, let E’ = E’\{(v i,v j )} if edge (v i,v j ) exists. Remaining proof on board The above process produces a stack graph without increasing the covering for any vertex v Є V. Furthermore, a split on an edge e Є E happens only if e intersects some edge that covers its left endpoint, and each split removes at least one such intersection. This implies that Δ (S) ≤ (X(G)+1) Δ (G).

PROOF(3) We now present the relation between the diameter and covering of stack graphs. Claim: n = |V| ≤ (2.Δ(S)) X(S)+2 --(2.1)

PROOF(4) Putting everything together. By (2.1) and Lemma 2, for any graph G with n nodes, there is a corresponding stack graph S also with n nodes:

RESULT Theorem: Given any 1-dimensional graph G with unit distance between consecutive nodes and Δ(G) = O(log n), then w(G) = Ω(n log n / log log n). Corollary: There is a graph that any of its t-spanners with diameter O(log n) has Ω(w(T) log n / log log n) weight.

APPLICATIONS Unit edged spanners appear in distributed systems, communication network design and genetics. Spanners are used to design routing tables in a communication network. Designs synchronizers which is a distributed scheme that simulates synchrony on an asynchronous distributed system.

REFERENCES On Sparse Spanners of Weighted Graphs : By Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph and José Soares. Lower Bound for Sparse Euclidean Spanners : By Pankaj K. Agarwal, Yusu Wang, Peng Yin.