Yang Cai Sep 24, 2014. An overview of today’s class Prior-Independent Auctions & Bulow-Klemperer Theorem General Mechanism Design Problem Vickrey-Clarke-Groves.

Slides:



Advertisements
Similar presentations
Combinatorial Auction
Advertisements

Yossi Sheffi Mass Inst of Tech Cambridge, MA ESD.260J/1.260J/15.
Truthful Mechanisms for Combinatorial Auctions with Subadditive Bidders Speaker: Shahar Dobzinski Based on joint works with Noam Nisan & Michael Schapira.
6.896: Topics in Algorithmic Game Theory Lecture 21 Yang Cai.
Testing Linear Pricing Algorithms for use in Ascending Combinatorial Auctions (A5) Giro Cavallo David Johnson Emrah Kostem.
(Single-item) auctions Vincent Conitzer v() = $5 v() = $3.
Network Economics -- Lecture 4: Auctions and applications Patrick Loiseau EURECOM Fall 2012.
Zihe Wang. Only 1 good Single sell VS Bundle sell Randomization is needed LP method Mechanism characterization.
Truthful Spectrum Auction Design for Secondary Networks Yuefei Zhu ∗, Baochun Li ∗ and Zongpeng Li † ∗ Electrical and Computer Engineering, University.
Algorithmic mechanism design Vincent Conitzer
6.896: Topics in Algorithmic Game Theory Lecture 20 Yang Cai.
Class 4 – Some applications of revenue equivalence
Yang Cai Oct 01, An overview of today’s class Myerson’s Auction Recap Challenge of Multi-Dimensional Settings Unit-Demand Pricing.
On Optimal Single-Item Auctions George Pierrakos UC Berkeley based on joint works with: Constantinos Daskalakis, Ilias Diakonikolas, Christos Papadimitriou,
Prior-free auctions of digital goods Elias Koutsoupias University of Oxford.
Performance Evaluation Sponsored Search Markets Giovanni Neglia INRIA – EPI Maestro 4 February 2013.
Approximating optimal combinatorial auctions for complements using restricted welfare maximization Pingzhong Tang and Tuomas Sandholm Computer Science.
Simple and Near-Optimal Auctions Tim Roughgarden (Stanford)
CPS Bayesian games and their use in auctions Vincent Conitzer
Seminar in Auctions and Mechanism Design Based on J. Hartline’s book: Approximation in Economic Design Presented by: Miki Dimenshtein & Noga Levy.
Auctions. Strategic Situation You are bidding for an object in an auction. The object has a value to you of $20. How much should you bid? Depends on auction.
Intermediate Microeconomics Midterm (50%) (4/27) Final (50%) (6/22) Term grades based on relative ranking. Mon 1:30-2:00 ( 社科 757)
An Approximate Truthful Mechanism for Combinatorial Auctions An Internet Mathematics paper by Aaron Archer, Christos Papadimitriou, Kunal Talwar and Éva.
Multi-item auctions with identical items limited supply: M items (M smaller than number of bidders, n). Three possible bidder types: –Unit-demand bidders.
What I Really Wanted To Know About Combinatorial Auctions Arne Andersson Trade Extensions Uppsala University.
Yang Cai Sep 10, An overview of today’s class Case Study: Sponsored Search Auction Myerson’s Lemma Back to Sponsored Search Auction.
Auction Theory Class 3 – optimal auctions 1. Optimal auctions Usually the term optimal auctions stands for revenue maximization. What is maximal revenue?
Optimal auction design Roger Myerson Mathematics of Operations research 1981.
Seminar In Game Theory Algorithms, TAU, Agenda  Introduction  Computational Complexity  Incentive Compatible Mechanism  LP Relaxation & Walrasian.
Yang Cai Oct 15, Interim Allocation rule aka. “REDUCED FORM” : Variables: Interim Allocation rule aka. “REDUCED FORM” : New Decision Variables j.
6.853: Topics in Algorithmic Game Theory Fall 2011 Matt Weinberg Lecture 24.
Yang Cai Sep 17, An overview of today’s class Expected Revenue = Expected Virtual Welfare 2 Uniform [0,1] Bidders Example Optimal Auction.
Algorithmic Applications of Game Theory Lecture 8 1.
Yang Cai Sep 24, An overview of today’s class Prior-Independent Auctions & Bulow-Klemperer Theorem General Mechanism Design Problems Vickrey-Clarke-Groves.
Sequences of Take-It-or-Leave-it Offers: Near-Optimal Auctions Without Full Valuation Revelation Tuomas Sandholm and Andrew Gilpin Carnegie Mellon University.
Competitive Analysis of Incentive Compatible On-Line Auctions Ron Lavi and Noam Nisan SISL/IST, Cal-Tech Hebrew University.
Yang Cai Sep 15, An overview of today’s class Myerson’s Lemma (cont’d) Application of Myerson’s Lemma Revelation Principle Intro to Revenue Maximization.
Collusion and the use of false names Vincent Conitzer
Near-Optimal Simple and Prior-Independent Auctions Tim Roughgarden (Stanford)
Yang Cai Sep 8, An overview of the class Broad View: Mechanism Design and Auctions First Price Auction Second Price/Vickrey Auction Case Study:
Sequences of Take-It-or-Leave-it Offers: Near-Optimal Auctions Without Full Valuation Revelation Tuomas Sandholm and Andrew Gilpin Carnegie Mellon University.
Auction Seminar Optimal Mechanism Presentation by: Alon Resler Supervised by: Amos Fiat.
Combinatorial Auctions By: Shai Roitman
Auction Theory תכנון מכרזים ומכירות פומביות Topic 7 – VCG mechanisms 1.
By: Amir Ronen, Department of CS Stanford University Presented By: Oren Mizrahi Matan Protter Issues on border of economics & computation, 2002.
Yang Cai Oct 08, An overview of today’s class Basic LP Formulation for Multiple Bidders Succinct LP: Reduced Form of an Auction The Structure of.
Chapter 4 Bayesian Approximation By: Yotam Eliraz & Gilad Shohat Based on Chapter 4 on Jason Hartline’s book Seminar in Auctions and Mechanism.
Market Design and Analysis Lecture 5 Lecturer: Ning Chen ( 陈宁 )
Optimal mechanisms (part 2) seminar in auctions & mechanism design Presentor : orel levy.
Yang Cai Oct 06, An overview of today’s class Unit-Demand Pricing (cont’d) Multi-bidder Multi-item Setting Basic LP formulation.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 22.
Auctions serve the dual purpose of eliciting preferences and allocating resources between competing uses. A less fundamental but more practical reason.
Advanced Subjects in GT Prepared by Rina Talisman Introduction Revenue Equivalence The Optimal Auction (Myerson 1981) Auctions.
Comp/Math 553: Algorithmic Game Theory Lecture 10
Comp/Math 553: Algorithmic Game Theory Lecture 11
By Audrey Hu and Liang Zou University of Amsterdam
Bayesian games and their use in auctions
Comp/Math 553: Algorithmic Game Theory Lecture 08
Mechanism design with correlated distributions
Comp/Math 553: Algorithmic Game Theory Lecture 09
Comp/Math 553: Algorithmic Game Theory Lecture 14
Chapter 4 Bayesian Approximation
Comp/Math 553: Algorithmic Game Theory Lecture 13
Comp/Math 553: Algorithmic Game Theory Lecture 15
Economics and Computation Week #13 Revenue of single Item auctions
Crash Course on Multi-Dimensional Mechanism Design
Near-Optimal Simple and Prior-Independent Auctions Tim Roughgarden (Stanford)
Information, Incentives, and Mechanism Design
CPS Bayesian games and their use in auctions
Presentation transcript:

Yang Cai Sep 24, 2014

An overview of today’s class Prior-Independent Auctions & Bulow-Klemperer Theorem General Mechanism Design Problem Vickrey-Clarke-Groves Mechanism

Revenue = Virtual Welfare [Myerson ’81 ] For any single-dimensional environment. Let F= F 1 × F 2 ×... × F n be the joint value distribution, and (x,p) be a DSIC mechanism. The expected revenue of this mechanism E v~F [Σ i p i (v)]=E v~F [Σ i x i (v) φ i (v i )], where φ i (v i ) := v i - (1-F i (v i ))/f i (v i ) is called bidder i’s virtual value (f i is the density function for F i ).

Myerson’s Auction  To optimize revenue, we should use the virtual welfare maximizing allocation rule - x (v) : = argmax x in X Σ i x i (v) φ i (v i )  If F i is regular, then φ i (v i ) is monotone in v i.  The virtual welfare maximizing allocation rule is monotone as well!  With the suitable payment rule, this is a DSIC mechanism that maximizes revenue.  Same result extends to irregular distributions, but requires extra work (ironging).

How Simple is Myerson’s Auction?  Single-item and i.i.d. regular bidders, e.g. F 1 =F 2 =...=F n  All φ i ()’s are the same and monotone.  The highest bidder has the highest virtual value!  The optimal auction is the Vickrey auction with reserve price at φ -1 (0).  Real “killer application” for practice, arguably at eBay.

How Simple is Myerson’s Auction?  Single-item regular bidders but F 1 ≠F 2 ≠...≠F n  All φ i ()’s are monotone but not the same.  2 bidders, v 1 uniform in [0,1]. v 2 uniform in [0,100]. -φ 1 (v 1 ) = 2v 1 -1, φ 2 (v 2 ) = 2v Optimal Auction: When v 1 > ½, v 2 < 50, sell to 1 at price ½. When v 1 50, sell to 2 at price 50. When 0 < 2v 1 -1 < 2v 2 – 100, sell to 2 at price: (99+2v 1 )/2, a tiny bit above 50 When 0 < 2v < 2v 1 -1, sell to 1 at price: (2v 2 -99)/2, a tiny bit above ½.

How Simple is Myerson’s Auction?  The payment seems impossible to explain to someone who hasn’t studied virtual valuations...  In the i.i.d. case, the optimal auction is simply eBay with a smartly chosen opening bid.  This weirdness is inevitable if you are 100% confident in your model (i.e., the F i ’s) and you want every last cent of the maximum-possible expected revenue.  Seek out auctions that are simpler, more practical, and more robust than the theoretically optimal auction.  Optimality requires complexity, thus we’ll only look for approximately optimal solutions.

Prophet Inequality

Optimal Stopping Rule for a Game  Consider the following game, with n stages. In stage i, you are offered a nonnegative prize π i, drawn from a distribution G i  You are told the distributions G 1,..., G n in advance, and these distributions are independent.  You are told the realization π i only at stage i.  After seeing π i, you can either accept the prize and end the game, or discard the prize and proceed to the next stage.  The decision’s difficulty stems from the trade-off between the risk of accepting a reasonable prize early and then missing out later on a great one, and the risk of having to settle for a lousy prize in one of the final stages.

Prophet Inequality Prophet Inequality [Samuel-Cahn ’84]: There exists a strategy, such that the expected payoff ≥ 1/2 E[max i π i ]. In fact, a threshold strategy suffices. - Proof: See the board. - Remark: Our lowerbound only credits t units of value when more than one prize is above t. This means that the ½ applies even if, whenever there are multiple prizes above the threshold, the strategy somehow picks the worst (i.e., smallest) of these.

Application to Single-item Auctions  Single item, regular but non-i.i.d. value distributions  Key idea: think of φ i (v i ) + as the i-th prize. (G i is the induced non-negative virtual value distribution from F i )  In a single-item auction, the optimal expected revenue E v~F [max Σ i x i (v) φ i (v i )] = E v~F [max i φ i (v i ) + ] (the expected prize of the prophet)  Consider the following allocation rule 1.Choose t such that Pr[max i φ i (v i ) + ≥ t] = ½. 2.Give the item to a bidder i with φ i (v i ) ≥ t, if any, breaking ties among multiple candidate winners arbitrarily (subject to monotonicity)

Application to Single-item Auctions (cont’d)  By Prophet Inequality, any allocation rule that satisfy the above has E v~F [Σ i x i (v) φ i (v i )] ≥ ½ E v~F [max i φ i (v i ) + ]  Here is a specific monotone allocation rule that satisfies this: 1.Set a reserve price r i =φ i -1 (t) for each bidder i with the t defined above. 2.Give the item to the highest bidder that meets her reserve price (if any).  The payment is simply the maximum of winner’s reserve price and the second highest bid (that meets her own reserve).  Interesting Open Problem: How about anonymous reserve? We know it’s between [1/4, 1/2], can you pin down the exact approximation ratio?

Prior-Independent Auctions

Another Critique to the Optimal Auction  What if your distribution are unknown?  When there are many bidders and enough past data, it is reasonable to assume you know exactly the value distribution.  But if the market is “thin”, you might not be confident or not even know the value distribution.  Can you design an auction that does not use any knowledge about the distributions but performs almost as well as if you know everything about the distributions.  Active research agenda, called prior-independent auctions.

Bulow-Klemperer Theorem [Bulow-Klemperer ’96] For any regular distribution F and integer n. Remark: -Vickrey’s auction is prior-independent! -This means with the same number of bidders, Vickrey Auction achieves at least n-1/n fraction of the optimal revenue. -More competition is better than finding the right auction format.

Proof of Bulow-Klemperer Consider another auction M with n+1 bidders: 1.Run Myerson on the first n bidders. 2.If the item is unallocated, give it to the last bidder for free. This is a DSIC mechanism. It has the same revenue as Myreson’s auction with n bidders. It’s allocation rule always give out the item. Vickrey Auction also always give out the item, but always to the bidder who has the highest value (also with the highest virtual value). Vickrey Auction has the highest virtual welfare among all DSIC mechanisms that always give out the item! ☐