Approximating optimal combinatorial auctions for complements using restricted welfare maximization Pingzhong Tang and Tuomas Sandholm Computer Science.

Slides:



Advertisements
Similar presentations
Combinatorial Auction
Advertisements

Combinatorial Auctions with Complement-Free Bidders – An Overview Speaker: Michael Schapira Based on joint works with Shahar Dobzinski & Noam Nisan.
Testing Linear Pricing Algorithms for use in Ascending Combinatorial Auctions (A5) Giro Cavallo David Johnson Emrah Kostem.
(Single-item) auctions Vincent Conitzer v() = $5 v() = $3.
Network Economics -- Lecture 4: Auctions and applications Patrick Loiseau EURECOM Fall 2012.
Truthful Spectrum Auction Design for Secondary Networks Yuefei Zhu ∗, Baochun Li ∗ and Zongpeng Li † ∗ Electrical and Computer Engineering, University.
Algorithmic mechanism design Vincent Conitzer
6.896: Topics in Algorithmic Game Theory Lecture 20 Yang Cai.
(More on) characterizing dominant-strategy implementation in quasilinear environments (see, e.g., Nisan’s review: Chapter 9 of Algorithmic Game Theory.
Auction Theory Class 5 – single-parameter implementation and risk aversion 1.
Blackbox Reductions from Mechanisms to Algorithms.
Yang Cai Sep 24, An overview of today’s class Prior-Independent Auctions & Bulow-Klemperer Theorem General Mechanism Design Problem Vickrey-Clarke-Groves.
Class 4 – Some applications of revenue equivalence
Yang Cai Oct 01, An overview of today’s class Myerson’s Auction Recap Challenge of Multi-Dimensional Settings Unit-Demand Pricing.
On Optimal Single-Item Auctions George Pierrakos UC Berkeley based on joint works with: Constantinos Daskalakis, Ilias Diakonikolas, Christos Papadimitriou,
Prior-free auctions of digital goods Elias Koutsoupias University of Oxford.
CPS Bayesian games and their use in auctions Vincent Conitzer
Mechanism Design, Machine Learning, and Pricing Problems Maria-Florina Balcan.
Seminar in Auctions and Mechanism Design Based on J. Hartline’s book: Approximation in Economic Design Presented by: Miki Dimenshtein & Noga Levy.
An Approximate Truthful Mechanism for Combinatorial Auctions An Internet Mathematics paper by Aaron Archer, Christos Papadimitriou, Kunal Talwar and Éva.
Multi-item auctions with identical items limited supply: M items (M smaller than number of bidders, n). Three possible bidder types: –Unit-demand bidders.
Yang Cai Sep 10, An overview of today’s class Case Study: Sponsored Search Auction Myerson’s Lemma Back to Sponsored Search Auction.
Auction Theory Class 3 – optimal auctions 1. Optimal auctions Usually the term optimal auctions stands for revenue maximization. What is maximal revenue?
Optimal auction design Roger Myerson Mathematics of Operations research 1981.
Seminar In Game Theory Algorithms, TAU, Agenda  Introduction  Computational Complexity  Incentive Compatible Mechanism  LP Relaxation & Walrasian.
Yang Cai Oct 15, Interim Allocation rule aka. “REDUCED FORM” : Variables: Interim Allocation rule aka. “REDUCED FORM” : New Decision Variables j.
6.853: Topics in Algorithmic Game Theory Fall 2011 Matt Weinberg Lecture 24.
Bundling Equilibrium in Combinatorial Auctions Written by: Presented by: Ron Holzman Rica Gonen Noa Kfir-Dahav Dov Monderer Moshe Tennenholtz.
Yang Cai Sep 17, An overview of today’s class Expected Revenue = Expected Virtual Welfare 2 Uniform [0,1] Bidders Example Optimal Auction.
Algorithmic Applications of Game Theory Lecture 8 1.
Limitations of VCG-Based Mechanisms Shahar Dobzinski Joint work with Noam Nisan.
Sequences of Take-It-or-Leave-it Offers: Near-Optimal Auctions Without Full Valuation Revelation Tuomas Sandholm and Andrew Gilpin Carnegie Mellon University.
Multi-unit auctions & exchanges (multiple indistinguishable units of one item for sale) Tuomas Sandholm Computer Science Department Carnegie Mellon University.
Mechanisms for a Spatially Distributed Market Moshe Babaioff, Noam Nisan and Elan Pavlov School of Computer Science and Engineering Hebrew University of.
Week 10 1 COS 444 Internet Auctions: Theory and Practice Spring 2008 Ken Steiglitz
Combinatorial Auction. Conbinatorial auction t 1 =20 t 2 =15 t 3 =6 f(t): the set X  F with the highest total value the mechanism decides the set of.
Auctioning one item PART 2 Tuomas Sandholm Computer Science Department Carnegie Mellon University.
Competitive Analysis of Incentive Compatible On-Line Auctions Ron Lavi and Noam Nisan SISL/IST, Cal-Tech Hebrew University.
Yang Cai Sep 15, An overview of today’s class Myerson’s Lemma (cont’d) Application of Myerson’s Lemma Revelation Principle Intro to Revenue Maximization.
Truthfulness and Approximation Kevin Lacker. Combinatorial Auctions Goals – Economically efficient – Computationally efficient Problems – Vickrey auction.
Collusion and the use of false names Vincent Conitzer
Yang Cai Sep 8, An overview of the class Broad View: Mechanism Design and Auctions First Price Auction Second Price/Vickrey Auction Case Study:
Multi-Unit Auctions with Budget Limits Shahar Dobzinski, Ron Lavi, and Noam Nisan.
Sequences of Take-It-or-Leave-it Offers: Near-Optimal Auctions Without Full Valuation Revelation Tuomas Sandholm and Andrew Gilpin Carnegie Mellon University.
Auction Seminar Optimal Mechanism Presentation by: Alon Resler Supervised by: Amos Fiat.
More on Social choice and implementations 1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA A Using slides by Uri.
The Cost and Windfall of Manipulability Abraham Othman and Tuomas Sandholm Carnegie Mellon University Computer Science Department.
Mechanism Design CS 886 Electronic Market Design University of Waterloo.
Auction Theory תכנון מכרזים ומכירות פומביות Topic 7 – VCG mechanisms 1.
By: Amir Ronen, Department of CS Stanford University Presented By: Oren Mizrahi Matan Protter Issues on border of economics & computation, 2002.
Chapter 4 Bayesian Approximation By: Yotam Eliraz & Gilad Shohat Based on Chapter 4 on Jason Hartline’s book Seminar in Auctions and Mechanism.
Market Design and Analysis Lecture 5 Lecturer: Ning Chen ( 陈宁 )
Optimal mechanisms (part 2) seminar in auctions & mechanism design Presentor : orel levy.
Yang Cai Oct 06, An overview of today’s class Unit-Demand Pricing (cont’d) Multi-bidder Multi-item Setting Basic LP formulation.
Automated Mechanism Design Tuomas Sandholm Presented by Dimitri Mostinski November 17, 2004.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 22.
Combinatorial Auction. A single item auction t 1 =10 t 2 =12 t 3 =7 r 1 =11 r 2 =10 Social-choice function: the winner should be the guy having in mind.
Bayesian Algorithmic Mechanism Design Jason Hartline Northwestern University Brendan Lucier University of Toronto.
Risk Aversion and Optimal Reserve Prices in First and Second-Price Auctions Audrey Hu University of Amsterdam Stephen A. Matthews University of Pennsylvania.
Advanced Subjects in GT Prepared by Rina Talisman Introduction Revenue Equivalence The Optimal Auction (Myerson 1981) Auctions.
Comp/Math 553: Algorithmic Game Theory Lecture 10
Comp/Math 553: Algorithmic Game Theory Lecture 11
False-name Bids “The effect of false-name bids in combinatorial
CPS Mechanism design Michael Albert and Vincent Conitzer
Comp/Math 553: Algorithmic Game Theory Lecture 09
Chapter 4 Bayesian Approximation
Economics and Computation Week #13 Revenue of single Item auctions
Vincent Conitzer Mechanism design Vincent Conitzer
Vincent Conitzer CPS 173 Mechanism design Vincent Conitzer
Information, Incentives, and Mechanism Design
Presentation transcript:

Approximating optimal combinatorial auctions for complements using restricted welfare maximization Pingzhong Tang and Tuomas Sandholm Computer Science Department Carnegie Mellon University

High-level contributions New approach to mechanism design: “Social welfare with holes” – I.e., curtail the set of allocations based on agents’ reports (e.g., bids), and use welfare maximization within remaining set – Unlike maximum-in-range approach [Nisan and Ronen 07], where the allocation set is curtailed ex ante – Completely general (e.g., remove all but one allocation) – Trickier because not all report-based ways of curtailing are incentive compatible (paper contains an example) – We present the first (non-trivial) such curtailing that maintains incentive compatibility – Hopefully, a fruitful avenue going forward New, general form of reserve pricing for combinatorial auctions – Any efficient mechanism can be arbitrarily far from optimal revenue, while our reserves avoid this downside

Background Optimal (i.e., expected revenue maximizing) auctions known for: – Single item [Myerson 81] – Multiple identical units [Maskin and Riley 89] – Multiple items with complementarities in a 1-dimensional setting [Levin 97] These are all based on virtual welfare maximization – Requires prior information – Complex and unintuitive – Inefficient Welfare maximizing allocation rule, but with reserve prices – Symmetric (1-item) setting: Identical to Myerson – Asymmetric (1-parameter) setting: 2-approximation [Hartline and Roughgarden EC-09]

Our technical contributions We approximate Levin's optimal auction for complements using welfare maximization with a form of reserve pricing for combinatorial auctions – Reserve prices restrict allocations based on bids – In Levin's setting, we use a specific form: Monopoly reserves – We obtain a 2-approximation to optimal revenue And a 6-approximation using anonymous reserves Why are we doing this? – More efficient than Levin’s auction Any efficient mechanism has arbitrarily low revenue (e.g., in the paper) – Requires less info to verify correct execution of the mechanism (given the reserves) – Simpler, easier to understand – Better starting points for automated mechanism design (than, e.g., VCG)

Myerson's setting Seller has 1 indivisible item for sale, which he values at 0 Set of bidders 1,…,n – Bidder i’s valuation, v i, is private knowledge – Distribution F i and regular density f i, according to which v i is drawn, are common knowledge – Quasi-linearity: u i = v i – payment i Two constraints: – (Ex interim) incentive compatibility – (Ex interim) individual rationality Objective: Maximize seller's expected revenue

Myerson's solution Asymmetric case: f i ’s are different – Virtual valuation: – Allocation rule: Give the item to the bidder with the highest virtual valuation, if it is positive and retain the item otherwise – Payment rule: The lowest bid by i that would have won – Interpretation: Run second price auction on the virtual valuations, with reserve price 0 Symmetric case: f i = f j – Optimal auction is a 2 nd -price auction with monopoly reserve price – Monopoly reserve price: v ri such that

More about asymmetric case… 2 nd -price auction with monopoly reserve prices (one per bidder) is a 2-approximation of Myerson's optimal auction [Hartline and Roughgarden EC-09] A key step: Myerson's Lemma [1981] – Lemma: For any truthful 1-item auction, expected payment from a bidder equals his expected virtual valuation

What about asymmetric case? Hartline and Roughgarden EC-09: – Second price auction with monopoly reserve prices (one per bidder) is a 2-approximation of Myerson's optimal auction A key step: Myerson's Lemma [1981] – Lemma: For any truthful 1-item auction, expected payment from a bidder equals his expected virtual valuation – Proof of Myerson’s Lemma: Fixing others' reports, from bidder i’s perspective, Truthfulness implies a take-it-or-leave-it price (call it v 0 ) Expected payment from bidder i is Expected virtual valuation is By calculus, these two formulas are equal QED

Levin's setting: Complements with 1-dimensional type Seller has 2 items for sale, which he values at 0 – All his results (and ours) extend to m items Set of bidders 1,…,n – Bidder i’s type θ i is private knowledge – Distribution F i and regular density f i, according to which θ i is drawn, are common knowledge – Bidder i 's valuation function is – Quasi-linearity: u i () = v i () - payment i Two constraints: – (Ex interim) incentive compatibility – (Ex interim) individual rationality Objective: Maximize seller's expected revenue v

Levin's solution Virtual valuation: Allocation Rule: Maximize virtual social welfare, among all the positive virtual valuations Payment rule: θ1θ1 θ0θ0 Pay v i1 (θ 0 ), get item 1 Pay additional v i2 (θ 1 )+ v i3 (θ 1 ), get both items θ1θ1 θ0θ0 Pay v i2 (θ 0 ), get item 2 Pay additional v i1 (θ 1 )+ v i3 (θ 1 ), get both items Pay 0, get nothing Pay 0, get nothing Case I: Agent i wins item 1 first: Case II: Agent i wins item 2 first:

Approximating Levin's auction Why difficult? – Multiple definitions of reserve prices in combinatorial settings One fake bidder, two fake bidders, bidder-specific... What are monopoly reserves in combinatorial settings? – Myerson's Lemma in this setting? – [Hartline and Roughgarden EC-09] approach doesn't apply

Our allocation-curtailing approach applied to Levin's setting Idea – Preclude bidder-bundle pairs that have negative virtual valuations – Preclude bidder-bundle pairs where removing some item(s) from a bidder gives that bidder higher virtual value Theorem – Together with welfare-maximization allocation rule and Levin's payment rule, the preclusions above constitute an auction that is incentive compatible (in weakly dominant strategies), is individually rational, and 2-approximates Levin's revenue

Desirable properties of our auction Incentive compatible, individually rational, 2-approximation – Important step for proving this is allocation monotonicity: Fixing others' reports, a bidder's set of allocated items is expanding in his report More efficient than Levin – Less restriction of the allocation space – Welfare maximizing in this less restricted space Requires less information, e.g., to verify correct execution – 5 numbers versus distribution function Easier to understand A bidder in his lowest type gets zero payoff For any allocation, a bidder's payment plus his virtual valuation is no less than his real valuation – We use this in 2-approximation proof

Extending Myerson's Lemma to this setting Myerson's Lemma: Bidder’s expected payment equals his expected virtual value Our conditions: – 1. Truthful – 2. Allocation monotonic – 3. Lowest type gets zero payoff Our auction satisfies 1, 2 and 3 Levin's conditions: – a. Truthful – b. Revenue-maximizing – c. Utility functions satisfy the requirements of envelope theorem

Proof of 2-approximation Let M be the social welfare maximizing mechanism under monopoly reserves (i.e, our auction) Step 1. By definition, M maximizes restricted social welfare Step 2. By Myerson’s lemma extended to this setting, expected revenue of M = expected sum of bidders’ virtual valuations in M Step 3. As we prove, in M, a bidder's payment plus his virtual valuation is no less than his real valuation Step 4. By Steps 2 and 3, 2 * [Expect revenue of M] ≥ social welfare of M Step 5. By Steps 1 and 4, 2 * [Expect revenue of M] ≥ social welfare of Levin Step 6. By individual rationality, social welfare of Levin ≥ revenue of Levin QED

6-approximation of Levin’s optimal revenue using anonymous reserves Now, usual definition of reserve price: – Seller pretends to have valuation a for 1 st item, b for 2 nd item, and c for bundle Auction L: Levin's optimal auction on original set of bidders Auction D: Duplicate each bidder. Then apply welfare-maximizing allocation rule and Levin payment rule Step 1. Auction D 3-approximates Auction L Step 2. Let a, b, and c be random variables that simulate max i {v i1 }, max i {v i2 } and max i {v i1 + v i2 + v i3 }, respectively, in the original bidder set Step 3. Step 2 trivially yields a 2-approximation of D. Hence, a 6- approximation of L QED In contrast to 4-approximation for 1-item setting [Hartline & Roughgarden EC-09]

Conclusions New general approach to mechanism design: Social welfare with holes New general form of reserve pricing under welfare maximization in combinatorial auctions Application of this idea to Levin's setting of 1-D complements: – 2-approximation to revenue 6-approximation with anonymous reserves – More efficient than Levin – Requires less info to verify correct execution (given reserves) – Easier to understand – Extended Myerson’s lemma to this setting

Future work Characterizing truthful restrictions – 1-item setting: Equivalent to allocation monotonicity – Levin's setting: In our follow-on work we have found a necessary condition (e.g., can go from nothing to winning Item 1 to winning Item 2 to winning both) Plan to search for optimal auctions under this condition Application to other settings Application to automated mechanism design