Deterministic vs. Non-Deterministic Graph Property Testing Asaf Shapira Tel-Aviv University Joint work with Lior Gishboliner.

Slides:



Advertisements
Similar presentations
Lower Bounds for Additive Spanners, Emulators, and More David P. Woodruff MIT and Tsinghua University To appear in FOCS, 2006.
Advertisements

Hardness of testing 3- colorability in bounded degree graphs Andrej Bogdanov Kenji Obata Luca Trevisan.
Finding Cycles and Trees in Sublinear Time Oded Goldreich Weizmann Institute of Science Joint work with Artur Czumaj, Dana Ron, C. Seshadhri, Asaf Shapira,
December 2, 2009 IPAM: Invariance in Property Testing 1 Invariance in Property Testing Madhu Sudan Microsoft/MIT TexPoint fonts used in EMF. Read the TexPoint.
Randomized Distributed Decision David Peleg Joint work with: Pierre Fraigniaud Amos Korman Merav Parter.
COMPLEXITY THEORY CSci 5403 LECTURE XVI: COUNTING PROBLEMS AND RANDOMIZED REDUCTIONS.
Complexity ©D.Moshkovits 1 Where Can We Draw The Line? On the Hardness of Satisfiability Problems.
Bart Jansen 1.  Problem definition  Instance: Connected graph G, positive integer k  Question: Is there a spanning tree for G with at least k leaves?
Inapproximability of MAX-CUT Khot,Kindler,Mossel and O ’ Donnell Moshe Ben Nehemia June 05.
Approximate Distance Oracles and Spanners with sublinear surplus Mikkel Thorup AT&T Research Uri Zwick Tel Aviv University.
Gillat Kol joint work with Ran Raz Locally Testable Codes Analogues to the Unique Games Conjecture Do Not Exist.
On the Density of a Graph and its Blowup Raphael Yuster Joint work with Asaf Shapira.
COMP 553: Algorithmic Game Theory Fall 2014 Yang Cai Lecture 21.
A UNIFIED FRAMEWORK FOR TESTING LINEAR-INVARIANT PROPERTIES ARNAB BHATTACHARYYA CSAIL, MIT (Joint work with ELENA GRIGORESCU and ASAF SHAPIRA)
Christian Sohler | Every Property of Hyperfinite Graphs is Testable Ilan Newman and Christian Sohler.
Artur Czumaj Dept of Computer Science & DIMAP University of Warwick Testing Expansion in Bounded Degree Graphs Joint work with Christian Sohler.
1 List Coloring and Euclidean Ramsey Theory TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A Noga Alon, Tel Aviv.
Asaf Shapira (Georgia Tech) Joint work with: Arnab Bhattacharyya (MIT) Elena Grigorescu (Georgia Tech) Prasad Raghavendra (Georgia Tech) 1 Testing Odd-Cycle.
Testing the Diameter of Graphs Michal Parnas Dana Ron.
What is the next line of the proof? a). Let G be a graph with k vertices. b). Assume the theorem holds for all graphs with k+1 vertices. c). Let G be a.
Conditional Regularity and Efficient testing of bipartite graph properties Ilan Newman Haifa University Based on work with Eldar Fischer and Noga Alon.
Testing of Clustering Noga Alon, Seannie Dar Michal Parnas, Dana Ron.
Michael Bender - SUNY Stony Brook Dana Ron - Tel Aviv University Testing Acyclicity of Directed Graphs in Sublinear Time.
On Proximity Oblivious Testing Oded Goldreich - Weizmann Institute of Science Dana Ron – Tel Aviv University.
1 On the Benefits of Adaptivity in Property Testing of Dense Graphs Joint work with Mira Gonen Dana Ron Tel-Aviv University.
1 Algorithmic Aspects in Property Testing of Dense Graphs Oded Goldreich – Weizmann Institute Dana Ron - Tel-Aviv University.
1 On the Benefits of Adaptivity in Property Testing of Dense Graphs Joint works with Mira Gonen and Oded Goldreich Dana Ron Tel-Aviv University.
Lower Bounds for Property Testing Luca Trevisan U C Berkeley.
Christian Sohler 1 University of Dortmund Testing Expansion in Bounded Degree Graphs Christian Sohler University of Dortmund (joint work with Artur Czumaj,
Toward NP-Completeness: Introduction Almost all the algorithms we studies so far were bounded by some polynomial in the size of the input, so we call them.
On sparse Ramsey graphs Torsten Mütze, ETH Zürich Joint work with Ueli Peter (ETH Zürich) TexPoint fonts used in EMF. Read the TexPoint manual before you.
Approximating the Distance to Properties in Bounded-Degree and Sparse Graphs Sharon Marko, Weizmann Institute Dana Ron, Tel Aviv University.
Finding Cycles and Trees in Sublinear Time Oded Goldreich Weizmann Institute of Science Joint work with Artur Czumaj, Dana Ron, C. Seshadhri, Asaf Shapira,
Some 3CNF Properties are Hard to Test Eli Ben-Sasson Harvard & MIT Prahladh Harsha MIT Sofya Raskhodnikova MIT.
Convergent Dense Graph Sequences
Correlation testing for affine invariant properties on Shachar Lovett Institute for Advanced Study Joint with Hamed Hatami (McGill)
Approximating the MST Weight in Sublinear Time Bernard Chazelle (Princeton) Ronitt Rubinfeld (NEC) Luca Trevisan (U.C. Berkeley)
The Effect of Induced Subgraphs on Quasi-randomness Asaf Shapira & Raphael Yuster.
Graph limit theory: Algorithms László Lovász Eötvös Loránd University, Budapest May
July The Mathematical Challenge of Large Networks László Lovász Eötvös Loránd University, Budapest
Algorithms on large graphs László Lovász Eötvös Loránd University, Budapest May
Edge-disjoint induced subgraphs with given minimum degree Raphael Yuster 2012.
NP-complete Problems SAT 3SAT Independent Set Hamiltonian Cycle
1 Sublinear Algorithms Lecture 1 Sofya Raskhodnikova Penn State University TexPoint fonts used in EMF. Read the TexPoint manual before you delete this.
CSCI 3160 Design and Analysis of Algorithms Tutorial 10 Chengyu Lin.
1 The number of orientations having no fixed tournament Noga Alon Raphael Yuster.
1 Rainbow Decompositions Raphael Yuster University of Haifa Proc. Amer. Math. Soc. (2008), to appear.
Lower Bounds for Property Testing Luca Trevisan U.C. Berkeley.
Testing the independence number of hypergraphs
Optimization in very large graphs László Lovász Eötvös Loránd University, Budapest December
Ramsey Properties of Random Graphs; A Sharp Threshold Proven via A Hypergraph Regularity Lemma. Ehud Friedgut, Vojtech Rödl, Andrzej Rucinski, Prasad.
The mathematical challenge of large networks László Lovász Eötvös Loránd University, Budapest Joint work with Christian Borgs, Jennifer Chayes, Balázs.
Regularity partitions and the topology of graphons László Lovász Eötvös Loránd University, Budapest Joint work Balázs Szegedy August
Artur Czumaj DIMAP DIMAP (Centre for Discrete Maths and it Applications) Computer Science & Department of Computer Science University of Warwick Testing.
狄彥吾 (Yen-Wu Ti) 華夏技術學院資訊工程系 Property Testing on Combinatorial Objects.
Complexity and Efficient Algorithms Group / Department of Computer Science Testing the Cluster Structure of Graphs Christian Sohler joint work with Artur.
NPC.
NP ⊆ PCP(n 3, 1) Theory of Computation. NP ⊆ PCP(n 3,1) What is that? NP ⊆ PCP(n 3,1) What is that?
Nondeterministic property testing László Lovász Katalin Vesztergombi.
Complexity and Efficient Algorithms Group / Department of Computer Science Testing the Cluster Structure of Graphs Christian Sohler joint work with Artur.
Complexity Classes.
On Sample Based Testers
Property Testing (a.k.a. Sublinear Algorithms )
Hans Bodlaender, Marek Cygan and Stefan Kratsch
Finding Cycles and Trees in Sublinear Time
Speaker: Chuang-Chieh Lin National Chung Cheng University
ICS 353: Design and Analysis of Algorithms
Graph limits and graph homomorphisms László Lovász Microsoft Research
Around the Regularity Lemma
The Subgraph Testing Model
Presentation transcript:

Deterministic vs. Non-Deterministic Graph Property Testing Asaf Shapira Tel-Aviv University Joint work with Lior Gishboliner

Outline 1.Introduction and the main result 1.1 What is Property Testing 1.2 Erdős and Property Testing 1.2 Example – Testing Max-Cut 1.2 Non-deterministic Testing 1.3 The Lovász -Vesztergombi Theorem. 1.4 Our main result. 2.Overview of the proof

Graph Decision Problems P Accept Reject A decision algorithm for property P must: Accept every graph in P. Reject every graph that is not in P. Examples: P = “being K 3 -free”, or P=“being 3-colorable”.

P ε Pr(accept)≥2/3 Pr(reject)≥2/3 Don’t care Graph Property Testing A property tester T for P must: Accept every graph in P with prob. at least 2/3. Reject every graph that is ε- far from P with prob. at least 2/3. Number of edge queries should be depends only on ε. Graph property testing was introduced by Goldriech, Goldwasser and Ron in Definition: A graph is ε- far from P if one should add/delete at least ε n 2 edges to make it satisfy P.

Erdős and Property Testing [Erdős ‘82]: Is k-colorability testable? If one should remove from G at least ε n 2 edges to make it k-colorable, then does G contain a subgraph on c k ( ε ) vertices that is not k-colorable? [Rödl-Duke ‘85]: yes. [Brown-Erdős-Sós ‘73]: Is K 3 -freeness testable? If one should remove from G at least ε n 2 edges to make it K 3 -free, then does G contain at least c( ε )n 3 copies of K 3 ? [Ruzsa-Szemerédi ‘76]: yes. [Erdős ‘62]: 2-colorablity is not testable in “sparse graphs”!

How a graph property tester T works? S G 1. T samples a set S of q=q( ε ) vertices. 2. Queries all the pairs of vertices in S. 3. Decides to accept or reject based on the subgraph spanned by S.

G in P  at least 2/3 of subgraphs on q vertices make T accept G is ε- far from P  at most 1/3 of subgraphs… Pr( T accepts G) = relative number of subgraphs that cause T to accept Erdős and Property Testing Graph Property Testing  Local-vs-Global Properties of Graphs  Extremal Graph Theory Erdős-Stone, Erdős-Hajnal, Erdős-Rademacher,…

Triangle-freeness [Ruzsa- Szemerédi ‘76 ] k-colorability [ Rödl-Duke ‘85 ] Having a large cut [Goldreich-Goldwasser-Ron ’96] Which Properties Are Testable? Is there a sufficient condition that guarantees that a property is testable? Every Hereditary graph property [Alon-S ‘05] Any other?

Example – Testing edge density P = “G has at least 1/5n 2 edges” Idea for a tester: 1. Sample a set S of q vertices. 2. Accept iff e(S) ≥ (1/5 - ε /2)q 2 Suppose G is in P. The expected value of e(S) is at least 1/5q 2. Chebyshev does the work. Suppose G is ε -far from P. The expected value of e(S) is at most (1/5 - ε )q 2. Chebyshev does the work.

Example – Testing Max-Cut G A B e(A,B)≥ 1/5n 2 S P = “G has a cut with 1/5n 2 edges” Idea for a tester: 1.Sample a set S of q vertices. 2.Go over all partitions of S into 2 sets X 1,X 2 and count e(X 1,X 2 ). Accept iff e(X 1,X 2 ) ≥ (1/5 - ε /2)q 2 Suppose G is in P: E[ e(S ∩ A,S ∩ B) ]  1/5q 2. Use Chebyshev Inequality. If G is ε -far from P: whp S has no cut X 1,X 2, s.t. e(X 1,X 2 ) ≥ (1/5 - ε /2)q 2 …? Theorem (Goldreich, Goldwasser and Ron, 1996): This is true. This is hard to show.

A certificate for Max-Cut Suppose someone promises that A,B is a large cut. It’s easy to test/check that A,B is indeed the cut we are looking for. How? Test the density of the edges between A and B. The coloring is a certificate for P. Corollary: Max-cut is easy to test with advice. Question: Can we go from testing the correctness of a certificate to testing the existence of a certificate? Is there a general transformation? G e(A,B)≥ 1/5n 2 B A

Non-deterministic Testing Definition: A k-colored graph is a coloring of E ( K n ) by 1,…,k. Definition: A (k,m)-coloring of G is a coloring of the edges/non-edges of G so that edges are colored 1,…,m and non-edges m+1,…,k. Definition: P is non-deterministically testable if there is a property Q of k-colored graphs such that: 1.G satisfies P iff G has a (k,m)-coloring satisfying Q. 2.Q is testable.

The Lovász -Vesztergombi Theorem. Theorem (Lovász-Vesztergombi, ‘12): A graph property is testable if and only if it is non-deterministically testable. Their proof used graph limits, and so it did not give an explicit bound on the query complexity. Question (Lovász & Vesztergombi): Is there a proof that gives an explicit bound?

Our Main Result Question (Lovász & Vesztergombi): Is there a proof that gives an explicit bound? Theorem (Gishboliner-S ‘13): Yes. The new proof uses Szemerédi’s regularity lemma. The bound has tower type dependence on q. Our proof shows the combinatorial intuition behind this result.

2. Proof Overview 2.1. Notions related to the Regularity Lemma Claims leading to the main result Proof of the main result.

What is a γ -Regular Pair? VU U’U’ V’V’ Definition: U,V is γ -regular if |d(U’,V’) - d(U,V)| ≤ γ for every U’ U, V’ V such that |U’|≥ γ |U|,|V’|≥ γ |V|. γ -regular ≡ γ random bipartite graph d(U,V)=e(U,V)/|U||V|

Regularity Instances Definition: A regularity instance R contains the information about an equipartition: r: the number of clusters η i,j : densities (1 ≤ i < j ≤ r) γ : error parameter – how regular the pairs are : Set of irregular pairs of size ≤ γ r 2. V i,V j is γ -regular for every (i,j) V1V1 V2V2 V3V3 V4V4 V5V5 VrVr V6V6 V7V7 V 1,…,V r :equipartition of V(G) d(V 1,V 4 )= η 1,4

Estimating the number of subgraphs Lemma: Knowing that a graph G satisfies a regularity instance R tells us the number of triangles in G up to an additive error of o(n 3 ). Observation 1: The above lemma is true for every fixed graph. Observation 2: The above lemma is true in k-colored graphs as well. Corollary: Suppose H is a k-colored graph, R is a k-colored regularity instance, and T is tester for Q. Then: H satisfies R Pr( T accepts H) ≈ Acc(R)

Szemerédi’s Regularity Lemma Lemma: For every positive γ and integer t there is T=T( γ,t,k) such that every k-colored graph satisfies a k- colored regularity instance R with t ≤ r(R) ≤ T and γ (R)= γ.

Simple claims Definition: 1. A k-colored regularity instance R is good if Acc(R)≥1/2. 2. A graph regularity instance R’ is a good-merger if it is the merger of a good reg-instance R. Main Observation: 1.G in P  G satisfies a good-merger. 2.G is far from P  G is far from satisfying a good-merger.

A test for P: 1.Go over all k-colored regularity instances R that satisfy Acc(R)≥1/ Let R’ be the merger of R Test if G satisfies R’. 1.3 Accept if the answer is yes. 2. If all tests come back negative, reject. Proof of the main result Theorem (Alon-Fischer-Newman-S. ‘06): For every regularity instance R, the property of satisfying R is testable.

Open Problem Is the gap between the query-complexity of Q and the query-complexity of P tight? Is there P such that q Q =poly(1/ ε ), but q P >> poly(1/ ε ) ?

Thank You!

Simple claims Claim: If G is ε -far from P then every (k,m)-coloring of G is ε -far from Q Restated: 1. G in P   (k,m)-coloring H so that Pr( T accepts H) ≥ 2/3 2. G is ε -far from P   (k,m)-coloring H satisfies Pr( T accepts H) ≤ 1/3 Re-restated: 1. G in P   (k,m)-coloring H satisfying a reg-instance R with Acc(R)≥1/2 2. G is ε -far from P  G doesn’t have such a coloring