Motion.

Slides:



Advertisements
Similar presentations
CSCE 643 Computer Vision: Lucas-Kanade Registration
Advertisements

Optical Flow Estimation
CISC 489/689 Spring 2009 University of Delaware
Investigation Into Optical Flow Problem in the Presence of Spatially-varying Motion Blur Mohammad Hossein Daraei June 2014 University.
Computer Vision Optical Flow
Automatic Image Alignment (direct) : Computational Photography Alexei Efros, CMU, Fall 2006 with a lot of slides stolen from Steve Seitz and Rick.
Motion Estimation I What affects the induced image motion? Camera motion Object motion Scene structure.
Announcements Quiz Thursday Quiz Review Tomorrow: AV Williams 4424, 4pm. Practice Quiz handout.
Optical Flow Methods 2007/8/9.
CSCE 641 Computer Graphics: Image Registration Jinxiang Chai.
Lecture 9 Optical Flow, Feature Tracking, Normal Flow
Announcements Project1 artifact reminder counts towards your grade Demos this Thursday, 12-2:30 sign up! Extra office hours this week David (T 12-1, W/F.
Announcements Project 1 test the turn-in procedure this week (make sure your folder’s there) grading session next Thursday 2:30-5pm –10 minute slot to.
Optical flow and Tracking CISC 649/849 Spring 2009 University of Delaware.
Visual motion Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys.
Motion Computing in Image Analysis
Optical Flow Estimation
Lecture 19: Optical flow CS6670: Computer Vision Noah Snavely
Visual motion Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys.
Motion Estimation Today’s Readings Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199) Numerical Recipes (Newton-Raphson), 9.4 (first.
1 Stanford CS223B Computer Vision, Winter 2006 Lecture 7 Optical Flow Professor Sebastian Thrun CAs: Dan Maynes-Aminzade, Mitul Saha, Greg Corrado Slides.
3D Rigid/Nonrigid RegistrationRegistration 1)Known features, correspondences, transformation model – feature basedfeature based 2)Specific motion type,
Matching Compare region of image to region of image. –We talked about this for stereo. –Important for motion. Epipolar constraint unknown. But motion small.
Automatic Image Alignment via Motion Estimation
KLT tracker & triangulation Class 6 Read Shi and Tomasi’s paper on good features to track
Computational Photography: Image Registration Jinxiang Chai.
Optical Flow Digital Photography CSE558, Spring 2003 Richard Szeliski (notes cribbed from P. Anandan)
Announcements Project1 due Tuesday. Motion Estimation Today’s Readings Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199) Supplemental:
CSCE 641 Computer Graphics: Image Registration Jinxiang Chai.
A plane-plus-parallax algorithm Basic Model: When FOV is not very large and the camera motion has a small rotation, the 2D displacement (u,v) of an image.
Optical flow Combination of slides from Rick Szeliski, Steve Seitz, Alyosha Efros and Bill Freeman.
Generating panorama using translational movement model.
1 Motion Estimation Readings: Ch 9: plus papers change detection optical flow analysis Lucas-Kanade method with pyramid structure Ming Ye’s improved.
Optical Flow Donald Tanguay June 12, Outline Description of optical flow General techniques Specific methods –Horn and Schunck (regularization)
The Measurement of Visual Motion P. Anandan Microsoft Research.
Motion Segmentation By Hadas Shahar (and John Y.A.Wang, and Edward H. Adelson, and Wikipedia and YouTube) 1.
CSE 185 Introduction to Computer Vision Feature Tracking and Optical Flow.
Visual motion Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys.
Uses of Motion 3D shape reconstruction Segment objects based on motion cues Recognize events and activities Improve video quality Track objects Correct.
Computer Vision Spring ,-685 Instructor: S. Narasimhan Wean 5403 T-R 3:00pm – 4:20pm Lecture #16.
Effective Optical Flow Estimation
Joint Tracking of Features and Edges STAN BIRCHFIELD AND SHRINIVAS PUNDLIK CLEMSON UNIVERSITY ABSTRACT LUCAS-KANADE AND HORN-SCHUNCK JOINT TRACKING OF.
Optical Flow. Distribution of apparent velocities of movement of brightness pattern in an image.
Miguel Tavares Coimbra
O PTICAL F LOW & L AYERED M OTION Prepared by: Lidya Tonkonogi Mu’in Rizik 1.
Motion Estimation Today’s Readings Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199) Newton's method Wikpedia page
1 Lucas-Kanade Motion Estimation Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides.
Motion Estimation Today’s Readings Trucco & Verri, 8.3 – 8.4 (skip 8.3.3, read only top half of p. 199) Newton's method Wikpedia page
Optical flow and keypoint tracking Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys.
1 Motion Estimation Readings: Ch 9: plus papers change detection optical flow analysis Lucas-Kanade method with pyramid structure Ming Ye’s improved.
MASKS © 2004 Invitation to 3D vision Lecture 3 Image Primitives andCorrespondence.
Image Motion. The Information from Image Motion 3D motion between observer and scene + structure of the scene –Wallach O’Connell (1953): Kinetic depth.
MOTION Model. Road Map Motion Model Non Parametric Motion Field : Algorithms 1.Optical flow field estimation. 2.Block based motion estimation. 3.Pel –recursive.
Motion and optical flow
Feature Tracking and Optical Flow
CPSC 641: Image Registration
Estimating Parametric and Layered Motion
Motion and Optical Flow
The Brightness Constraint
The Brightness Constraint
Motion Estimation Today’s Readings
Filtering Things to take away from this lecture An image as a function
Announcements more panorama slots available now
Motion Estimation Thanks to Steve Seitz, Simon Baker, Takeo Kanade, and anyone else who helped develop these slides.
Announcements Questions on the project? New turn-in info online
Coupled Horn-Schunck and Lukas-Kanade for image processing
Announcements more panorama slots available now
Optical flow Computer Vision Spring 2019, Lecture 21
Filtering An image as a function Digital vs. continuous images
Optical flow and keypoint tracking
Presentation transcript:

Motion

Optical flow Measurement of motion at every pixel

Problem definition: optical flow How to estimate pixel motion from image H to image I? Solve pixel correspondence problem given a pixel in H, look for nearby pixels of the same color in I Key assumptions color constancy: a point in H looks the same in I For grayscale images, this is brightness constancy small motion: points do not move very far This is called the optical flow problem

Lukas-Kanade flow Prob: we have more equations than unknowns Solution: solve least squares problem minimum least squares solution given by solution (in d) of: The summations are over all pixels in the K x K window This technique was first proposed by Lukas & Kanade (1981) described in Trucco & Verri reading

Iterative Refinement Iterative Lukas-Kanade Algorithm Estimate velocity at each pixel by solving Lucas-Kanade equations Warp H towards I using the estimated flow field - use image warping techniques Repeat until convergence

Coarse-to-fine optical flow estimation Gaussian pyramid of image H Gaussian pyramid of image I image I image H u=10 pixels u=5 pixels u=2.5 pixels u=1.25 pixels image H image I

Coarse-to-fine optical flow estimation Gaussian pyramid of image H Gaussian pyramid of image I image I image H run iterative L-K warp & upsample run iterative L-K . image J image I

Multi-resolution Lucas Kanade Algorithm Compute Iterative LK at highest level For Each Level i Take flow u(i-1), v(i-1) from level i-1 Upsample the flow to create u*(i), v*(i) matrices of twice resolution for level i. Multiply u*(i), v*(i) by 2 Compute It from a block displaced by u*(i), v*(i) Apply LK to get u’(i), v’(i) (the correction in flow) Add corrections u’(i), v’(i) to obtain the flow u(i), v(i) at ith level, i.e., u(i)=u*(i)+u’(i), v(i)=v*(i)+v’(i)

Optical Flow Results

Optical Flow Results

Optical flow Results

Optical flow competition http://vision.middlebury.edu/flow/eval/

Global Flow Dominant Motion in the image Global Motion is caused by Motion of all points in the scene Motion of most of the points in the scene A Component of motion of all points in the scene Global Motion is caused by Motion of sensor (Ego Motion) Motion of a rigid scene Estimation of Global Motion can be used to Video Mosaics Image Alignment (Registration) Removing Camera Jitter Tracking (By neglecting camera motion) Video Segmentation etc.

Global Flow Application: Image Alignment

Global Flow Special Case of General Optical Flow Problem Can be solved by using Lucas Kanade algorithm. Specialized algorithms exist that perform better by further constraining the problem.

Motion Models First we look for a parametric form of global flow vector. Global Flow occurs because of 3D rigid motion of either the sensor or the scene. 3D Rigid Motion (If  is small) Also neglecting the higher order terms

Iterative Refinement Iterative Algorithm Estimate global flow by solving linear system Aa=B Warp H towards I using the estimated flow - use image warping techniques (to be covered later) Repeat until convergence or a fixed number of iterations

Coarse-to-fine global flow estimation Gaussian pyramid of image H Gaussian pyramid of image I image I image H u=10 pixels u=5 pixels u=2.5 pixels u=1.25 pixels image H image I

Coarse-to-fine global flow estimation Gaussian pyramid of image H Gaussian pyramid of image I image I image H Compute Flow Iteratively warp & upsample Compute Flow Iteratively . image J image I

Coarse-to-fine global motion estimation

Basic Components Pyramid Construction Motion Estimation Image Warping Coarse to Fine Refinement

Result of Global Motion Estimation Image ‘t’ Image ‘t+1’ Affine Model output 4 Pyramids Level 5 Iterations/Pyramid Level

Video Mosaic

Unwarp Mosaic http://research.microsoft.com/en-us/um/cambridge/projects/visionimagevideoediting/unwrap/

Summary Things to take away from this lecture Assumptions Optical flow problem definition Aperture problem and how it arises Assumptions Brightness constancy, small motion, smoothness Derivation of optical flow constraint equation Lukas-Kanade equation Conditions for solvability meanings of eigenvalues and eigenvectors Iterative refinement Newton’s method Coarse-to-fine flow estimation Applications Image alignment / Video mosaic