SymDiff: Leveraging Program Verification for Comparing Programs Shuvendu Lahiri Research in Software Engineering (RiSE), Microsoft Research, Redmond Jointly.

Slides:



Advertisements
Similar presentations
1 Lecture 5 Towards a Verifying Compiler: Multithreading Wolfram Schulte Microsoft Research Formal Methods 2006 Race Conditions, Locks, Deadlocks, Invariants,
Advertisements

A Polynomial-Time Algorithm for Global Value Numbering SAS 2004 Sumit Gulwani George C. Necula.
Joint work with Mike Barnett, Robert DeLine, Manuel Fahndrich, and Wolfram Schulte Verifying invariants in object-oriented programs K. Rustan M. Leino.
Demand-driven inference of loop invariants in a theorem prover
Writing specifications for object-oriented programs K. Rustan M. Leino Microsoft Research, Redmond, WA, USA 21 Jan 2005 Invited talk, AIOOL 2005 Paris,
1 Towards a Verifying Compiler: The Spec# Approach Wolfram Schulte Microsoft Research Formal Methods 2006 Joint work with Rustan Leino, Mike Barnett, Manuel.
Program Verification Using the Spec# Programming System ETAPS Tutorial K. Rustan M. Leino, Microsoft Research, Redmond Rosemary Monahan, NUIM Maynooth.
Technologies for finding errors in object-oriented software K. Rustan M. Leino Microsoft Research, Redmond, WA Lecture 1 Summer school on Formal Models.
Technologies for finding errors in object-oriented software K. Rustan M. Leino Microsoft Research, Redmond, WA Lecture 0 Summer school on Formal Models.
Automated Theorem Proving Lecture 1. Program verification is undecidable! Given program P and specification S, does P satisfy S?
Lecture 4 Towards a Verifying Compiler: Data Abstraction Wolfram Schulte Microsoft Research Formal Methods 2006 Purity, Model fields, Inconsistency _____________.
Challenges in increasing tool support for programming K. Rustan M. Leino Microsoft Research, Redmond, WA, USA 23 Sep 2004 ICTAC Guiyang, Guizhou, PRC joint.
Introduction to C Programming
.NET Technology. Introduction Overview of.NET What.NET means for Developers, Users and Businesses Two.NET Research Projects:.NET Generics AsmL.
This research is funded in part the U. S. National Science Foundation grant CCR DEET for Component-Based Software Murali Sitaraman, Durga P. Gandi.
Rigorous Software Development CSCI-GA Instructor: Thomas Wies Spring 2012 Lecture 10.
An Abstract Interpretation Framework for Refactoring P. Cousot, NYU, ENS, CNRS, INRIA R. Cousot, ENS, CNRS, INRIA F. Logozzo, M. Barnett, Microsoft Research.
Using SMT solvers for program analysis Shaz Qadeer Research in Software Engineering Microsoft Research.
Hongjin Liang and Xinyu Feng
Synthesis, Analysis, and Verification Lecture 04c Lectures: Viktor Kuncak VC Generation for Programs with Data Structures “Beyond Integers”
Linear real and integer arithmetic. Fixed-size bit-vectors Uninterpreted functions Extensional arrays Quantifiers Model generation Several input formats.
A Program Transformation For Faster Goal-Directed Search Akash Lal, Shaz Qadeer Microsoft Research.
Compilation 2011 Static Analysis Johnni Winther Michael I. Schwartzbach Aarhus University.
ECE 454 Computer Systems Programming Compiler and Optimization (I) Ding Yuan ECE Dept., University of Toronto
Α ϒ ʎ …… Reachability Modulo Theories Akash Lal Shaz Qadeer, Shuvendu Lahiri Microsoft Research.
CodeContracts & Clousot Francesco Logozzo - Microsoft Mehdi Bouaziz – ENS.
Automated Software Verification with a Permission-Based Logic 20 th June 2014, Zürich Malte Schwerhoff, ETH Zürich.
1 Regression-Verification Benny Godlin Ofer Strichman Technion.
1 1 Regression Verification for Multi-Threaded Programs Sagar Chaki, SEI-Pittsburgh Arie Gurfinkel, SEI-Pittsburgh Ofer Strichman, Technion-Haifa Originally.
Mahadevan Subramaniam and Bo Guo University of Nebraska at Omaha An Approach for Selecting Tests with Provable Guarantees.
1 Translation Validation: From Simulink to C Michael RyabtsevOfer Strichman Technion, Haifa, Israel Acknowledgement: sponsored by a grant from General.
SymDiff: Leveraging Program Verification for Comparing Programs Shuvendu Lahiri Research in Software Engineering (RiSE), Microsoft Research, Redmond Contributors:
Will You Still Compile Me Tomorrow
K. Rustan M. Leino Research in Software Engineering (RiSE) Microsoft Research, Redmond, WA part 0 International Summer School Marktoberdorf Marktoberdorf,
Formal Methods of Systems Specification Logical Specification of Hard- and Software Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt.
Lecture 2 Towards a Verifying Compiler: Logic of Object oriented Programs Wolfram Schulte Microsoft Research Formal Methods 2006 Objects, references, heaps,
Automatically Proving the Correctness of Compiler Optimizations Sorin Lerner Todd Millstein Craig Chambers University of Washington.
CS 536 Spring Intermediate Code. Local Optimizations. Lecture 22.
Using and Building an Automatic Program Verifier K. Rustan M. Leino Research in Software Engineering (RiSE) Microsoft Research, Redmond Lecture 1 LASER.
K. Rustan M. Leino Research in Software Engineering (RiSE) Microsoft Research, Redmond, WA part 0 Summer School on Logic and Theorem-Proving in Programming.
ECI 2007: Specification and Verification of Object- Oriented Programs Lecture 1.
Building a program verifier K. Rustan M. Leino Microsoft Research, Redmond, WA 10 May 2006 Guest lecture, Shaz Qadeer’s cse599f, Formal Verification of.
Validating High-Level Synthesis Sudipta Kundu, Sorin Lerner, Rajesh Gupta Department of Computer Science and Engineering, University of California, San.
From last time S1: l := new Cons p := l S2: t := new Cons *p := t p := t l p S1 l p tS2 l p S1 t S2 l t S1 p S2 l t S1 p S2 l t S1 p L2 l t S1 p S2 l t.
1 Regression Verification: Proving the equivalence of similar programs Benny Godlin Ofer Strichman Technion, Haifa, Israel (This presentation is a subset.
Well-cooked Spaghetti: Weakest-Precondition of Unstructured Programs Mike Barnett and Rustan Leino Microsoft Research Redmond, WA, USA.
Chair of Software Engineering Automatic Verification of Computer Programs.
Using and Building an Automatic Program Verifier K. Rustan M. Leino Research in Software Engineering (RiSE) Microsoft Research, Redmond Lecture 5 LASER.
Describing Syntax and Semantics
272: Software Engineering Fall 2012 Instructor: Tevfik Bultan Lecture 4: SMT-based Bounded Model Checking of Concurrent Software.
Mathematics throughout the CS Curriculum Support by NSF #
Software Testing Verification and validation planning Software inspections Software Inspection vs. Testing Automated static analysis Cleanroom software.
Have Your Verified Compiler And Extend It Too Zachary Tatlock Sorin Lerner UC San Diego.
Towards Scalable Modular Checking of User-defined Properties Thomas Ball, MSR Brian Hackett, Mozilla Shuvendu Lahiri, MSR Shaz Qadeer, MSR Julien Vanegue,
Software Engineering Prof. Dr. Bertrand Meyer March 2007 – June 2007 Chair of Software Engineering Static program checking and verification Slides: Based.
Differential and cross-version program verification Shuvendu Lahiri Research in Software Engineering (RiSE), Microsoft Research, Redmond, WA USA Halmstad.
Using and Building an Automatic Program Verifier K. Rustan M. Leino Research in Software Engineering (RiSE) Microsoft Research, Redmond Lecture 3 Marktoberdorf.
©Ian Sommerville 2004Software Engineering, 7th edition. Chapter 22 Slide 1 Software Verification, Validation and Testing.
1 CSCD 326 Data Structures I Software Design. 2 The Software Life Cycle 1. Specification 2. Design 3. Risk Analysis 4. Verification 5. Coding 6. Testing.
Spec# Andreas Vida. Motivation Correct and maintainable software Correct and maintainable software Cost effective software production Cost effective software.
Compiler Optimizations ECE 454 Computer Systems Programming Topics: The Role of the Compiler Common Compiler (Automatic) Code Optimizations Cristiana Amza.
Specifying and verifying programs in Spec# K. Rustan M. Leino Microsoft Research, Redmond, WA, USA Invited talk, PSI 2006 Novosibirsk, Russia 27 June 2006.
Student: Shaobo He, Advisor: Zvonimir Rakamarić TOWARDS AUTOMATED DIFFERENTIAL PROGRAM VERIFICATION FOR APPROXIMATE COMPUTING.
Proving Optimizations Correct using Parameterized Program Equivalence University of California, San Diego Sudipta Kundu Zachary Tatlock Sorin Lerner.
Weakest Precondition of Unstructured Programs
SymDiff: A differential program verifier
Matching Logic An Alternative to Hoare/Floyd Logic
State your reasons or how to keep proofs while optimizing code
Hoare-style program verification
Model Checking and Its Applications
Presentation transcript:

SymDiff: Leveraging Program Verification for Comparing Programs Shuvendu Lahiri Research in Software Engineering (RiSE), Microsoft Research, Redmond Jointly with Chris Hawblitzel (Microsoft Research, Redmond), Ming Kawaguchi (UCSD), Henrique Rebelo (UPFE) VSSE Workshop, 2012

Motivation

Ensuring compatibility – Programmers spend a large fraction of their time ensuring (read praying) compatibility after changes Microsoft Confidential Does my bug-fix introduce a regression? Does the refactoring change any observable behavior? How does the feature addition impact existing features?

Compatibility: applications f() { Print(foo); g(); } g() {... Print(foo); } f() { Print(foo); g(); } g() {... Print(foo); } g() {... Print(foo); Print(bar); } g() {... Print(foo); Print(bar); } New features Refactoring Compilers Library API changes Bug fixes Version Control

Compatibility: Microsoft Products – Windows APIs (Win32, ntdll) – Driver development kits –.NET frameworks, Base class library – Compilers (C#, JIT,…) – ….. Windows updates – Security patches – Bug fixes Every developer/tester /auditor

Problem Use static analysis to – Improve the productivity of users trying to ensure compatibility across program changes Potential benefits – Agility: fewer regressions, higher confidence in changes, smarter code review,..

Challenge Equivalence checking is too strong a spec – Most changes modify behavior Hard to formalize (separate expected changes from unexpected changes) – Refactoring  behaviors intact – Bug fix  non-buggy behaviors intact – Feature add  existing feature behaviors intact – API change  ?? – Data change  ?? – Config changes  ?? – …

Challenge  Opportunity Hard to formalize (separate expected changes from unexpected changes) – Refactoring  behaviors intact – Bug fix  non-buggy behaviors intact – Feature add  existing feature behaviors intact – ……. Highlight “unexpected” changes

Our approach – Provide a tool for performing semantic diff (diff over behaviors) Microsoft Confidential Semantic Diff Does my bug-fix introduce a regression? Does the refactoring change any observable behavior? How does the feature addition impact existing features?

Our approach – Provide a tool for performing semantic diff (diff over behaviors) Microsoft Confidential Semantic Diff Does my bug-fix introduce a regression? Does the refactoring change any observable behavior? How does the feature addition impact existing features?

What is SymDiff? A framework to – Leverage and extend program verification for providing relative correctness

Overview Demo Semantic diff – Tool (in current form) An application – Compiler compatibility Making SymDiff extensible with contracts – Users can express “expected” changes – Mutual summaries and relative termination

Demo 1.Eval (bug1) 2.Eval (func) 3.StringCopy (bug fix) 4.Recursive example

SymDiff tool

SymDiff – Apply and extend program verification techniques towards comparing programs – Current form: Checks input/output partial equivalence [CAV ’12 tool paper]

SymDiff tool: language independent SymDiff (Boogie+ Z3) P1 P2 ≠ P1 = P2 Works at Boogie intermediate language S1 C/.NET/ x86/ARM  Boogie S2 C/.NET/ x86/ARM  Boogie

Simple intermediate verification language – [Barnett et al. FMCO’05] Commands – x := E //assign – havoc x //change x to an arbitrary value – assert E //if E holds, skip; otherwise, go wrong – assume E // if E holds, skip; otherwise, block – S ; T //execute S, then T – goto L1, L2, … Ln //non-deterministic jump to labels – call x := Foo(e1,e2,..) //procedure call

Boogie (contd.) Two types of expressions – Scalars (bool, int, ref,..) – Arrays ([int]int, [ref]ref, …) Array expression sugar for SMT array theory – x[i] := y  x := upd(x, i, y) – y := x[i]  y := sel(x,i) Procedure calls sugar for modular specification call Foo(); assert pre; havoc V; assume post; procedure Foo(); requires pre; ensures post; modifies V;

Basic equivalence checking void swap1(ref int x, ref int y){ int z = x; x = y; y = z; } void swap2(ref int x, ref int y){ x = x + y; y = x - y; x = x - y; } z0 == x0 && x1 == y0 && y1 == z0 && swap1.x == x1 && swap1.y == y1 && x1' == x0 + y0 && y1' == x1' – y0 && x2' == x1' – y1' && swap2.x == x2' && swap2.y == y1' && ~ (swap1.x == swap2.x && swap1.y == swap2.y) Z3 theorem prover UNSAT (Equivalent) SAT (Counterexample)

Handling procedure calls Modular checking – Assume “matched” callees are deterministic and have the same I/O behaviors – Modeled by uninterpreted functions [Necula ‘00, …, Godlin & Strichman ‘08, …..] Addition of postcondition for Foo, Foo’ modifies g; free ensures g == UF_Foo_g(x, old(g)); free ensures ret == UF_Foo_ret(x, old(g)); procedure Foo(x) returns (ret); modifies g; free ensures g == UF_Foo_g(x, old(g)); free ensures ret == UF_Foo_ret(x, old(g)); procedure Foo’(x) returns (ret);

Modeling C/Java/C#/x86  Boogie Separation of concerns – Front end can be developed independently – Quite a few already exists HAVOC/VCC for C, Spec#/BCT for.NET, ?? for Java, … Heap usually modeled by arrays – x.f := y  Heap_f[x] := y Challenges – Deterministic modeling of I/O, malloc, ….. – The entire heap is passed around

Application: Compiler compatibility

Compiler validation Microsoft Confidential X86 ARM ARM+opt Source v1v2v3 Versions X86+opt v4

Compatibility: x86 vs. x86 example G01: mov EAX, EDX G02: and EAX, 255 push EAX mov EDX, 0x call WriteInternalFlag2(int,bool) __epilog: ret G01: mov EAX, EDX G02: and EAX, 255 push EAX mov EDX, 0x call WriteInternalFlag2(int,bool) __epilog: ret G01: push ESI mov ESI, EDX G02: and ESI, 255 push ESI mov EDX, 0x call WriteInternalFlag2(int,bool) G03: pop ESI ret G01: push ESI mov ESI, EDX G02: and ESI, 255 push ESI mov EDX, 0x call WriteInternalFlag2(int,bool) G03: pop ESI ret v2v3 X86+opt 254

Large x86 vs. ARM example

Beyond equivalence

Type of changeCheck Refactoring/OptimizationsIn1 = In2  Out1’ = Out2’ Bug fixIn1 = In2  (Fail1’ || Out1’ = Out2’) Feature additionIn1 = In2  (UnImplemented1’ || Out1’ = Out2’) Performance optimizationIn1 = In2  (Measure2’ <= Measure1’) Differential assertion checking (DAC) (see POPL’12 on “Interleaved Bugs ….”) In1 = In2  (Fail1’ || ~Fail2’)

Contracts over two programs Need an extensible contract mechanism for comparing two programs – Generalization of pre/post conditions Why – Allow users to express relative correctness specifications (e.g. conditional equivalence) – Automated methods may not always suffice (even for equivalence checking) Challenge – Should be able to leverage SMT-based program verifiers

Mutual summaries – A extensible framework for interprocedural program comparison Prior work (mostly automated): – Intraprocedural Translation validation [Pnueli et al. ‘98, Necula ‘00, Zuck et al. ’05,…] – Coarse intraprocedural (only track equalities) Regression verification [Strichman et al. ‘08]

Mutual summaries – [MSR-TR ] Mutual summaries (MS) Relative termination (RT) Dealing with loops and unstructured goto

Example: Feature addition int f1(int x1){ a1 = A1[x2]; a2 = A2[x2]; if (Op[x1] == 0) return Val[x1]; else if (Op[x1] == 1) return f1(a1) + f1(a2); else if (Op[x1] == 2) return f1(a1) - f1(a2); else return 0; } int f2(int x2, bool isU){ a1 = A1[x2]; a2 = A2[x2]; if (Op[x2] == 0) return Val[x2]; else if (Op[x2] == 1){ if (isU) return uAdd(f2(a1, T), f2(a2, T)); else return f2(a1, F) + f2(a2, F); } else if (Op[x2] == 2){ if (isU) return uSub(f2(a1, T), f2(a2, T)); else return f2(a1, F) – f2(a2, F); } else return 0; } The programs are equivalent when isU == False

Mutual summaries What is a mutual summary MS(F1, F2)? – An formula over two copies of parameters, globals (g), returns and next state of globals (g’) void F1(int x1){ if(x1 < 100){ g1 := g1 + x1; F1(x1 + 1); } void F2(int x2){ if(x2 < 100){ g2 := g2 + 2*x2; F2(x2 + 1); } MS(F1, F2): (x1 = x2 && g1 = 0) ==> g1’ <= g2’

Mutual summaries What does a mutual summary MS(F1, F2) mean? – For any pre/post state pairs (s1,t1) of F1, and (s2,t2) of F2, (s1,t1,s2,t2) satisfy MS(F1,F2) void F1(int x1){ if(x1 < 100){ g1 := g1 + x1; F1(x1 + 1); } void F2(int x2){ if(x2 < 100){ g2 := g2 + 2*x2; F2(x2 + 1); } MS(F1, F2): (x1 = x2 && g1 = 0) ==> g1’ <= g2’

Example int f1(int x1){ a1 = A1[x2]; a2 = A2[x2]; if (Op[x1] == 0) return Val[x1]; else if (Op[x1] == 1) return f1(a1) + f1(a2); else if (Op[x1] == 2) return f1(a1) - f1(a2); else return 0; } int f2(int x2, bool isU){ a1 = A1[x2]; a2 = A2[x2]; if (Op[x2] == 0) return Val[x2]; else if (Op[x2] == 1){ if (isU) return uAdd(f2(a1, T), f2(a2, T)); else return f2(a1, F) + f2(a2, F); } else if (Op[x2] == 2){ if (isU) return uSub(f2(a1, T), f2(a2, T)); else return f2(a1, F) – f2(a2, F); } else return 0; } MS(f1, f2) = (x1 == x2 && !isU) ==> ret1 == ret2

Checking mutual summaries Given F1, F2, MS(F1, F2), define the following procedure: void CheckMS_F1_F2(int x1, int x2){ inline F1(x1); inline F2(x2); assert MS(F1,F2); }

Modular checking: Instrumentation 1. Add “summary relations” R_F1, and R_F2 void F1(int x1); ensures R_F1(x1, old(g1)/g1, g1/g1’); 2. Use the summary relations to assume mutual summaries at call sites: axiom (forall x1, g1, g1’, x2, g2, g2’:: {R_F1(x1, g1, g1’), R_F2(x2, g2, g2’)} (R_F1(x1, g1, g1’) && R_F2(x2, g2, g2’)) ==> MS_F1_F2(x1, g1, g1’, x2, g2, g2’) );

Leveraging program verifiers Mutual Summary checking – Encode using contracts (postconditions), axioms – Verification condition generation (Boogie) – Checking using SMT solver (Z3) Next steps – Inferring the mutual summaries

Relative termination Specification relating the terminating behaviors of P2 wrt P1 Not just for proving termination – Required for composing transformations – MS1(f,f’) && MS2(f’,f’’)  (MS1  MS2) (f,f’’) – E.g. P_Eq(f,f’) && P_Eq(f’,f’’)  P_Eq(f,f’’)

Relative termination condition What is a relative termination condition RT(F1, F2)? – An formula over two copies of parameters, globals (g) void F1(int x1){ if(x1 < 100){ g1 := g1 + x1; F1(x1 + 1); } void F2(int x2){ if(x2 < 100){ g2 := g2 + 2*x2; F2(x2 + 1); } RT(F1, F2): (x1 <= x2)

Relative termination condition What does relative termination condition RT(F1, F2) mean? – For pair of inputs states (s1,s2), if F1 terminates on s1, and (s1,s2) satisfies RT(F1,F2), then F2 terminates on s2 void F1(int x1){ if(x1 < 100){ g1 := g1 + x1; F1(x1 + 1); } void F2(int x2){ if(x2 < 100){ g2 := g2 + 2*x2; F2(x2 + 1); } RT(F1, F2): (x1 <= x2)

What about loops? int Foo2() { i = 0; if (n > 0) { t = g; v = 3; do2: a[i] := v; i := i + 1; v := v + t; //FLABEL While2: //FLABEL if (i < n) goto do2; } return i; } int Foo2() { i = 0; if (n > 0) { t = g; v = 3; do2: a[i] := v; i := i + 1; v := v + t; return While2(i, t, v); } return i; } (int,int) While2(i2, t2, v2) { i2' := i2; v2' := v2; if (i2' < n) { a2[i2'] := v2'; i2' := i2' + 1; v2' := v2' + t2; return While2(i2', t2,v2'); } return (i2‘,v2’); }

Unrolling optimizations void F2(int i2) { if (i2 < n) { a2[i2] = 1; F2(i2+1); return; } return; } void F3(int i3) { if (i3 + 1 < n) { a3[i3] := 1; a3[i3+1] := 1; F3(i3+2); return; } if (i3 < n) a3[i3] := 1; return; } Extra step Inline F2 once inside F2 to “match up” with F3 MS(F2, F3) = (i2 == i3 && a2 == a3) ==> a2’ == a3’

Using mutual summaries Flow 1.Specify the FLABELS to remove loops and gotos into procedures 2.Write mutual summaries for pairs of resulting procedures 3.Specify the inlining limit (if needed)

Express translation validation proofs of many compiler optimizations – Copy propagation – Constant propagation – Common sub-expression elimination – Partial redundancy elimination – Loop invariant code hoisting – Conditional speculation – Speculation – Software pipelining – Loop unswitching – Loop unrolling – Loop peeling – Loop splitting – Loop alignment – Loop interchange – Loop reversal – Loop skewing – Loop fusion – Loop distribution [Kundu, Tatlock, Lerner ‘09] Order of updates differ in two versions

A nice example that uses MS, RT void A(ref x){ if(x != nil){ A(next[x]); D(x); } next: ref  ref; data: ref  int; void B(ref x){ if(x != nil){ D(x); B(next[x]); } void C(ref x){ ref i := x; if(i != nil){ Do: D(i); i := next[i]; if (i != nil) goto Do; } void D(ref x){ data[x] := U(data[x]); } Recursive Tail-recursive Do-while

Overview Demo Semantic diff – Tool (in current form) An application – Compiler compatibility Making SymDiff extensible with contracts – Mutual summaries and relative termination – General contracts for comparing programs

In summary Checking compatibility (statically) is a huge opportunity – Both formalizing the problem – Tools/techniques to solve it Likely to have impact on development cycle – Existing static analysis tools has failed to do so cost- effectively, in spite of all the progress Combining with dynamic analysis – To generate test cases when possible, or aid testing achieve higher differential coverage

Resources SymDiff website Binary release soon! – Contains C front end