Electricity Review 10 MYP Science.

Slides:



Advertisements
Similar presentations
ConcepTest 1 Series Resistors I
Advertisements

© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Direct Current Circuits
ConcepTest 19.1a Series Resistors I
ConcepTest 19.1aSeries Resistors I 9 V Assume that the voltage of the battery is 9 V and that the three resistors are identical. What is the potential.
Physics for Scientists and Engineers, 6e
Grade 6: Physical Sciences – Electricity
Circuit Construction Kit Clicker questions
Quick Quizzes Direct Current.
Electric currents and circuits
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 26 DC Circuits Chapter 26 Opener. These MP3 players contain circuits that are dc, at least in part. (The audio signal is ac.) The circuit diagram.
Direct Current Circuits
Tuesday December 4, 2007SNC1D | A. Manaktola Ohm’s Law Quiz – take up What are the coordinates for the two points? A(0,0) B(0.8,4) What is the difference.
Resistivity and Resistance
See also the NOTES documents posted online at our wikispace, the online self-quizzes posted at our wikispace, and all assignments and materials related.
Q26.1 Which of the two arrangements shown has the smaller equivalent resistance between points a and b? A. the series arrangement B. the parallel arrangement.
Which of the two cases shown has the smaller equivalent resistance between points a and b? Q Case #1 2. Case #2 3. the equivalent resistance is.
Standard Brightness. Series Which bulb, if either, in a series circuit is brighter? A.first bulb B.second bulb C.They have equal brightness.
© 2012 Pearson Education, Inc. Demographics A. Electrical Engineering B. Other Engineering C. Physics D. Chemistry E. Other.
© 2012 Pearson Education, Inc. Which of the two arrangements shown has the smaller equivalent resistance between points a and b? Q26.1 A. the series arrangement.
Concept Questions with Answers 8.02 W10D2
©1997 by Eric Mazur Published by Pearson Prentice Hall Upper Saddle River, NJ ISBN No portion of the file may be distributed, transmitted.
Copyright © 2009 Pearson Education, Inc. Chapter 26 DC Circuits.
Today 3/27  Circuits  Current  Potential (same as always)  HW:3/27 “Circuits 2” Due Monday 3/31.
ConcepTest 21.1 Connect the Battery
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Capacitors and/or TV (not Emf). 1. An empty capacitor does not resist the flow of current, and thus acts like a wire. 2. A capacitor that is full of charge.
Let us now use this realistic view of a battery in a simple circuit containing a battery and a single resistor. The electric potential difference across.
Circuits Series and Parallel. Series Circuits Example: A 6.00 Ω resistor and a 3.00 Ω resistor are connected in series with a 12.0 V battery. Determine.
1) Connect the Battery Which is the correct way to light the lightbulb with the battery? 4) all are correct 5) none are correct 1) 2) 3)
Copyright © 2009 Pearson Education, Inc. Chapter 26 DC Circuits.
Copyright © 2009 Pearson Education, Inc. Chapter 25 Electric Currents and Resistance.
Circuit Symbols: Battery Resistor Light-bulb Switch Wire.
Two identical resistors are wired in series. An electrical current runs through the combination. If the current through the first resistor is I 1, then.
ConcepTest 4.1aSeries Resistors I 9 V Assume that the voltage of the battery is 9 V and that the three resistors are identical. What is the potential difference.
ConcepTest 17.1a Electric Potential Energy I
Twenty Questions Electricity 1. Twenty Questions
ConcepTest 16.1aElectric Charge I ConcepTest 16.1a Electric Charge I 1) one is positive, the other is negative 2) both are positive 3) both are negative.
ConcepTest 18.1 Connect the Battery
ConcepTest 16.1aElectric Charge I ConcepTest 16.1a Electric Charge I a)one is positive, the other is negative b)both are positive c)both are negative d)both.
Copyright © 2009 Pearson Education, Inc. Chapter 25 Electric Currents and Resistance.
© 2008 Pearson Education, Inc. This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
1. ConcepTest 19.1aSeries Resistors I 9 V Assume that the voltage of the battery is 9 V and that the three resistors are identical. What is the potential.
PRACTICE (WB) 1)Four resistors in series. Choose voltage for your battery. Determine I and V across each resistor. 2)Four resistors in series. Chose I.
CIRCUITS Chapter Electric Circuit An electrical device connected so that it provides one or more complete paths for the movement of charges.
Ohm’s law is obeyed since the current still increases when V increases 1) Ohm’s law is obeyed since the current still increases when V increases Ohm’s.
Three identical bulbs Three identical light bulbs are connected in the circuit shown. When the power is turned on, and with the switch beside bulb C left.
ConcepTest 3.1Connect the Battery Which is the correct way to light the lightbulb with the battery? d) all are correct e) none are correct a) c) b)
1. ConcepTest 18.1Connect the Battery Which is the correct way to light the lightbulb with the battery? 4) all are correct 5) none are correct 1) 3) 2)
Review Exam 4. Chapter 18 Electric Currents Resistance and Resistors The ratio of voltage to current is called the resistance: (18-2a) (18-2b)
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
CH Model of a real battery A real battery can be modeled as an ideal battery (i.e. voltage source) and an internal resistance r. The voltage across.
Series and Parallel Circuits
Physics Circuits: Parallel
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Phys102 Lecture 10 & 11 DC Circuits Key Points EMF and Terminal Voltage Resistors in Series and in Parallel Circuits Containing Resistor and Capacitor.
When current is flowing in an ordinary metal wire, the magnitude of the average velocity of the electrons is closest to A) 1 m/s. B) 1 km/s. C) 10 m/s.
Chapter 27 Circuits (Basic) Electric Circuits Series Connections: Total Resistance = Sum of individual Resistances. Current the same through every load.
ConcepTest 19.1aSeries Resistors I 9 V Assume that the voltage of the battery is 9 V and that the three resistors are identical. What is the potential.
19 Current, Resistance, and Directed-Current Circuits Lectures by James L. Pazun Copyright © 2012 Pearson Education, Inc. publishing as Addison-Wesley.
1) Connect the Battery Which is the correct way to light the lightbulb with the battery? 4) all are correct 5) none are correct 1) 2) 3)
Physics: Principles with Applications, 6th edition
ELECTRICAL CIRCUITS.
1) Connect the Battery Which is the correct way to light the lightbulb with the battery? 4) all are correct 5) none are correct 1) 2) 3)
Twenty Questions Electricity 1.
ConcepTest 4.1a Series Resistors I
CKT Practice.
Aim: How do we explain Parallel Circuits?
Quiz Friday on basic circuits taken from homework and class work
Presentation transcript:

Electricity Review 10 MYP Science

Clicker Understanding A battery is connected to a wire, and makes a current in the wire. Which of the following changes would increase the current? Increasing the length of the wire Keeping the wire the same length, but making it thicker Using a battery with a higher rated voltage Making the wire into a coil, but keeping its dimensions the same Increasing the temperature of the wire

Clicker Understanding In Trial 1, a battery is connected to a single lightbulb and the brightness noted. Now, in Trial 2, a second, identical, lightbulb is added. How does the brightness of these two bulbs compare to the brightness of the single bulb in Trial 1? The brightness is greater. The brightness is the same. The brightness is less

Clicker Understanding Rank the bulbs in the following circuit according to their brightness, from brightest to dimmest.

ConcepTest 21.1 Connect the Battery Which is the correct way to light the lightbulb with the battery? 4) all are correct 5) none are correct 1) 2) 3)

ConcepTest 21.1 Connect the Battery Which is the correct way to light the lightbulb with the battery? 4) all are correct 5) none are correct 1) 2) 3) Current can only flow if there is a continuous connection from the negative terminal through the bulb to the positive terminal. This is only the case for Fig. (3).

ConcepTest 21.4a Series Resistors I 1) 12 V 2) zero 3) 3 V 4) 4 V 5) you need to know the actual value of R Assume that the voltage of the battery is 9 V and that the three resistors are identical. What is the potential difference across each resistor? 9 V

ConcepTest 21.4a Series Resistors I 1) 12 V 2) zero 3) 3 V 4) 4 V 5) you need to know the actual value of R Assume that the voltage of the battery is 9 V and that the three resistors are identical. What is the potential difference across each resistor? Since the resistors are all equal, the voltage will drop evenly across the 3 resistors, with 1/3 of 9 V across each one. So we get a 3 V drop across each. 9 V Follow-up: What would be the potential difference if R= 1 W, 2 W, 3 W ?

ConcepTest 21.4b Series Resistors II 1) 12 V 2) zero 3) 6 V 4) 8 V 5) 4 V In the circuit below, what is the voltage across R1? 12 V R1= 4 W R2= 2 W

ConcepTest 21.4b Series Resistors II 1) 12 V 2) zero 3) 6 V 4) 8 V 5) 4 V In the circuit below, what is the voltage across R1? The voltage drop across R1 has to be twice as big as the drop across R2. This means that V1 = 8 V and V2 = 4 V. Or else you could find the current I = V/R = (12 V)/(6 W) = 2 A, then use Ohm’s Law to get voltages. 12 V R1= 4 W R2= 2 W Follow-up: What happens if the voltage is doubled?

ConcepTest 21.5a Parallel Resistors I 2) zero 3) 5 A 4) 2 A 5) 7 A In the circuit below, what is the current through R1? 10 V R1= 5 W R2= 2 W

ConcepTest 21.5a Parallel Resistors I 2) zero 3) 5 A 4) 2 A 5) 7 A In the circuit below, what is the current through R1? 10 V R1= 5 W R2= 2 W The voltage is the same (10 V) across each resistor because they are in parallel. Thus, we can use Ohm’s Law, V1 = I1 R1 to find the current I1 = 2 A. Follow-up: What is the total current through the battery?

ConcepTest 21.6a Short Circuit I 1) all the current continues to flow through the bulb 2) half the current flows through the wire, the other half continues through the bulb 3) all the current flows through the wire 4) none of the above Current flows through a lightbulb. If a wire is now connected across the bulb, what happens?

ConcepTest 21.6a Short Circuit I 1) all the current continues to flow through the bulb 2) half the current flows through the wire, the other half continues through the bulb 3) all the current flows through the wire 4) none of the above Current flows through a lightbulb. If a wire is now connected across the bulb, what happens? The current divides based on the ratio of the resistances. If one of the resistances is zero, then ALL of the current will flow through that path. Follow-up: Doesn’t the wire have SOME resistance?

ConcepTest 21.6b Short Circuit II 1) glow brighter than before 2) glow just the same as before 3) glow dimmer than before 4) go out completely 5) explode Two lightbulbs A and B are connected in series to a constant voltage source. When a wire is connected across B, bulb A will:

ConcepTest 21.6b Short Circuit II 1) glow brighter than before 2) glow just the same as before 3) glow dimmer than before 4) go out completely 5) explode Two lightbulbs A and B are connected in series to a constant voltage source. When a wire is connected across B, bulb A will: Since bulb B is bypassed by the wire, the total resistance of the circuit decreases. This means that the current through bulb A increases. Follow-up: What happens to bulb B?

ConcepTest 21.7a Circuits I The lightbulbs in the circuit below are identical with the same resistance R. Which circuit produces more light? (brightness  power) 1) circuit 1 2) circuit 2 3) both the same 4) it depends on R

ConcepTest 21.7a Circuits I The lightbulbs in the circuit below are identical with the same resistance R. Which circuit produces more light? (brightness  power) 1) circuit 1 2) circuit 2 3) both the same 4) it depends on R In #1, the bulbs are in parallel, lowering the total resistance of the circuit. Thus, circuit #1 will draw a higher current, which leads to more light, because P = I V.

ConcepTest 21.8a More Circuits I What happens to the voltage across the resistor R1 when the switch is closed? The voltage will: 1) increase 2) decrease 3) stay the same V R1 R3 R2 S

ConcepTest 21.8a More Circuits I What happens to the voltage across the resistor R1 when the switch is closed? The voltage will: 1) increase 2) decrease 3) stay the same With the switch closed, the addition of R2 to R3 decreases the equivalent resistance, so the current from the battery increases. This will cause an increase in the voltage across R1 . V R1 R3 R2 S Follow-up: What happens to the current through R3?

ConcepTest 21.8b More Circuits II 1) increases 2) decreases 3) stays the same What happens to the voltage across the resistor R4 when the switch is closed? V R1 R3 R4 R2 S [CORRECT 5 ANSWER]

ConcepTest 21.8b More Circuits II 1) increases 2) decreases 3) stays the same What happens to the voltage across the resistor R4 when the switch is closed? V R1 R3 R4 R2 S A B C We just saw that closing the switch causes an increase in the voltage across R1 (which is VAB). The voltage of the battery is constant, so if VAB increases, then VBC must decrease! Follow-up: What happens to the current through R4?