C&O 355 Lecture 5 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.

Slides:



Advertisements
Similar presentations
February 21, 2002 Simplex Method Continued
Advertisements

February 14, 2002 Putting Linear Programs into standard form
C&O 355 Lecture 22 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
C&O 355 Lecture 15 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A.
Duality for linear programming. Illustration of the notion Consider an enterprise producing r items: f k = demand for the item k =1,…, r using s components:
C&O 355 Lecture 16 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A.
IEOR 4004 Midterm Review (part I)
C&O 355 Lecture 6 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Lecture 8 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Lecture 9 N. Harvey TexPoint fonts used in EMF.
C&O 355 Mathematical Programming Fall 2010 Lecture 6 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 9
Linear Programming – Simplex Method: Computational Problems Breaking Ties in Selection of Non-Basic Variable – if tie for non-basic variable with largest.
LINEAR PROGRAMMING Modeling a problem is boring --- and a distraction from studying the abstract form! However, modeling is very important: --- for your.
Local Computation Algorithms
C&O 355 Lecture 23 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
Solving LP Models Improving Search Special Form of Improving Search
Lecture #3; Based on slides by Yinyu Ye
Linear Programming – Simplex Method
C&O 355 Mathematical Programming Fall 2010 Lecture 22 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
1 Introduction to Linear Programming. 2 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. X1X2X3X4X1X2X3X4.
C&O 355 Lecture 4 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 20 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Mathematical Programming Fall 2010 Lecture 21 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Mathematical Programming Fall 2010 Lecture 15 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Lecture 20 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
How should we define corner points? Under any reasonable definition, point x should be considered a corner point x What is a corner point?
Basic Feasible Solutions: Recap MS&E 211. WILL FOLLOW A CELEBRATED INTELLECTUAL TEACHING TRADITION.
Computational Methods for Management and Economics Carla Gomes Module 6b Simplex Pitfalls (Textbook – Hillier and Lieberman)
CS38 Introduction to Algorithms Lecture 15 May 20, CS38 Lecture 15.
Design and Analysis of Algorithms
Optimization Linear Programming and Simplex Method
ISM 206 Lecture 3 The Simplex Method. Announcements Homework due 6pm Thursday Thursday 6pm lecture.
ISM 206 Lecture 3 The Simplex Method. Announcements.
MIT and James Orlin © Chapter 3. The simplex algorithm Putting Linear Programs into standard form Introduction to Simplex Algorithm.
C&O 355 Mathematical Programming Fall 2010 Lecture 17 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Lecture 2 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
C&O 355 Mathematical Programming Fall 2010 Lecture 2 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
Chapter 3 Linear Programming Methods 高等作業研究 高等作業研究 ( 一 ) Chapter 3 Linear Programming Methods (II)
C&O 355 Mathematical Programming Fall 2010 Lecture 19 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Mathematical Programming Fall 2010 Lecture 4 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
The big M method LI Xiao-lei.
C&O 355 Mathematical Programming Fall 2010 Lecture 18 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A Image:
Simplex Method Continued …
Discrete Optimization Lecture #3 2008/3/41Shi-Chung Chang, NTUEE, GIIE, GICE Last Time 1.Algorithms and Complexity » Problems, algorithms, and complexity.
1 Chapter 4 The Simplex Algorithm PART 2 Prof. Dr. M. Arslan ÖRNEK.
C&O 355 Mathematical Programming Fall 2010 Lecture 5 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A.
Hon Wai Leong, NUS (CS6234, Spring 2009) Page 1 Copyright © 2009 by Leong Hon Wai CS6234: Lecture 4  Linear Programming  LP and Simplex Algorithm [PS82]-Ch2.
C&O 355 Lecture 7 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
CPSC 536N Sparse Approximations Winter 2013 Lecture 1 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAA.
1 Introduction to Linear Programming. 2 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. X1X2X3X4X1X2X3X4.
1. 2 We studying these special cases to: 1- Present a theoretical explanation of these situations. 2- Provide a practical interpretation of what these.
Linear Programming: Formulations, Geometry and Simplex Method Yi Zhang January 21 th, 2010.
C&O 355 Lecture 19 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
EMGT 6412/MATH 6665 Mathematical Programming Spring 2016
Special Cases in simplex method applications
Chap 10. Sensitivity Analysis
prepared by Imran Ismail
Linear Programming in Two Dimensions
Chapter 6. Large Scale Optimization
Part 3. Linear Programming
Associate Professor of Computers & Informatics - Benha University
Max Z = x1 + x2 2 x1 + 3 x2  6 (1) x2  1.5 (2) x1 - x2  2 (3)
C&O 355 Lecture 3 N. Harvey Review of Lecture 2:
Chapter 8. General LP Problems
Part 3. Linear Programming
Graphical solution A Graphical Solution Procedure (LPs with 2 decision variables can be solved/viewed this way.) 1. Plot each constraint as an equation.
Chapter 8. General LP Problems
Chapter 6. Large Scale Optimization
Presentation transcript:

C&O 355 Lecture 5 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A

Outline Neighboring Bases Finding Better Neighbors “Benefit” of a coordinate Quick optimality proof Alternative optimality proof – Generalized neighbors and generalized benefit

1.What is a corner point? (BFS and bases) 2.What if there are no corner points? (Infeasible) 3.What are the “neighboring” bases? 4.What if no neighbors are strictly better? 5.How can I find a starting feasible basis? 6.Does the algorithm terminate? 7.Does it produce the right answer? Local-Search Algorithm Let B be a feasible basis (if none, infeasible) For each feasible basis B’ that is a neighbor of B Compute BFS y defined by B’ If c T y>c T x then set x=y Halt

Neighboring Bases Notation: A k = k th column of A Suppose we have a feasible basis B (|B|=m, A B full rank) – It defines BFS x where x B =A B -1 b ¸ 0 and x B =0 Can we find a basis “similar” to B but containing some k  B? Suppose we increase x k from 0 to ² for some k  B – We’ll violate the constraints Ax=b unless we modify x B x1x1 x2x2 Solutions of Ax=b Feasible region x3x3 Example: Just one constraint: A = [1, 1, 1], b = [1] Feasible region: P = { x : x 1 +x 2 +x 3 =1, x ¸ 0 } BFS x=(1,0,0), basis B={1} Increase x 2 to ². Infeasible! Modify x 1 to 1- ². Feasible! Increase ² to 1. Get BFS y=(0,1,0). x (1, ²,0) (1- ², ²,0) (0,1,0) How did we decide this?

Neighboring Bases Notation: A k = k th column of A Suppose we have a feasible basis B (|B|=m, A B full rank) – It defines BFS x where x B =A B -1 b ¸ 0 and x B =0 Can we find a basis “similar” to B but containing some k  B? Suppose we increase x k from 0 to ² for some k  B – We’ll violate the constraints Ax=b unless we modify x B – Replace x B with y B satisfying A B y B + ² A k =b – Given that y B [ {k} =0 and y k = ², there is a unique y ensuring Ay=b A B y B + ² A k = b ) y B = A B -1 (b- ² A k ) = x B - ² A B -1 A k – So y( ² )=x+ ² d where: d B =-A B -1 A k, d k =1, and d i =0 8 i  B [ {k} y = [ y B, ², 0 ] Bk B [ {k}

Neighboring Bases Suppose we increase x k from 0 to ² for some k  B – We’ll violate the constraints Ax=b unless we modify x B – Replace x B with y B satisfying A B y B + ² A k =b ) y B = A B -1 (b- ² A k ) = x B - ² A B -1 A k – So y( ² )=x+ ² d where: d B =-A B -1 A k, d k =1, and d i =0 8 i  B [ {k} y( ² ) feasible if y( ² ) ¸ 0, but not basic: it has (probably) m+1 non-zeros! – y( ² ) ¸ 0, 8 i, y( ² ) i = x i + ² d i ¸ 0, ² · min{ -x i /d i : i s.t. d i <0 } – If min= 1, then feasible region is unbounded in direction d. – Otherwise, let h be an i minimizing min. Let ± =-x h /d h. (Note: h 2 B) – Then y( ± ) h = x h + ± d h = 0, so y( ± ) has · m non-zeros A = [1, 1, 1], b = [1] BFS x=(1,0,0), basis B={1} d = (-1, 1, 0) ² · - x 1 /d 1 = 1 Take ± =1 and h=1 x1x1 x2x2 x3x3 Example: x y( ² ) = (1- ², ²,0) y( ± ) = (0,1,0)

Neighboring Bases Suppose we increase x k from 0 to ² for some k  B – We’ll violate the constraints Ax=b unless we modify x B – Replace x B with y B satisfying A B y B + ² A k =b ) y B = A B -1 (b- ² A k ) = x B - ² A B -1 A k – So y( ² )=x+ ² d where: d B =-A B -1 A k, d k =1, and d i =0 8 i  B [ {k} y( ² ) feasible if y( ² ) ¸ 0, but not basic: it has (probably) m+1 non-zeros! – y( ² ) ¸ 0, 8 i, y( ² ) i = x i + ² d i ¸ 0, ² · min{ -x i /d i : i s.t. d i <0 } – If min= 1, then feasible region is unbounded in direction d. – Otherwise, let h be an i minimizing min. Let ± =-x h /d h. (Note: h 2 B) – Then y( ± ) h = x h + ± d h = 0, so y( ± ) has · m non-zeros Claim: Let B’=B n {h} [ {k}. Then B’ is a basis. Proof: Suppose not. Then A k is a lin. comb. of vectors in A B n {h}. But A k is a unique lin. comb. of vectors in A B, since B is a basis. So coefficient of h in this lin. comb. must be 0. The lin. comb. is -d B, since -A B d B =A k. But -d h  0. Contradiction! ¤

Neighboring Bases Suppose we increase x k from 0 to ² for some k  B – We’ll violate the constraints Ax=b unless we modify x B – Replace x B with y B satisfying A B y B + ² A k =b ) y B = A B -1 (b- ² A k ) = x B - ² A B -1 A k – So y( ² )=x+ ² d where: d B =-A B -1 A k, d k =1, and d i =0 8 i  B [ {k} y( ² ) feasible if y( ² ) ¸ 0, but not basic: it has (probably) m+1 non-zeros! – y( ² ) ¸ 0, 8 i, y( ² ) i = x i + ² d i ¸ 0, ² · min{ -x i /d i : i s.t. d i <0 } – If min= 1, then feasible region is unbounded in direction d. – Otherwise, let h be an i minimizing min. Let ± =-x h /d h. (Note: h 2 B) – Then y( ± ) h = x h + ± d h = 0, so y( ± ) has · m non-zeros Claim: Let B’=B n {h} [ {k}. Then B’ is a basis. Claim: y( ± ) is a BFS determined by B’. Proof: We enforced Ay=b. We showed y( ± ) ¸ 0. (y is feasible) We showed B’ is a basis. We ensured y i =0 8 i  B’. ¤

Neighboring Bases Suppose we increase x k from 0 to ² for some k  B – We’ll violate the constraints Ax=b unless we modify x B – Replace x B with y B satisfying A B y B + ² A k =b ) y B = A B -1 (b- ² A k ) = x B - ² A B -1 A k – So y( ² )=x+ ² d where: d B =-A B -1 A k, d k =1, and d i =0 8 i  B [ {k} y( ² ) feasible if y( ² ) ¸ 0, but not basic: it has (probably) m+1 non-zeros! – y( ² ) ¸ 0, 8 i, y( ² ) i = x i + ² d i ¸ 0, ² · min{ -x i /d i : i s.t. d i <0 } – If min= 1, then feasible region is unbounded in direction d. – Otherwise, let h be an i minimizing min. Let ± =-x h /d h. (Note: h 2 B) – Then y( ± ) h = x h + ± d h = 0, so y( ± ) has · m non-zeros Claim: Let B’=B n {h} [ {k}. Then B’ is a basis. Claim: y( ± ) is a BFS determined by B’. B’ is a neighboring basis of B, and y( ± ) is a neighboring BFS of x. (Unless ± =0, in which case y( ± )=x.)

Neighboring Bases: Summary Suppose we have a feasible basis B (|B|=m, A B full rank) – It defines BFS x where x B =A B -1 b ¸ 0 and x B =0 Pick a coordinate k  B Compute y( ± ) – y( ² )=x+ ² d where: d B =-A B -1 A k, d k =1, and d i =0 8 i  B [ {k} – ± = max{ ² : y( ² ) feasible } If ± < 1 then y( ± ) is a BFS (This is completely determined by B and k) Pick any h 2 B with y( ± ) h =0 (Might be several possible h) y( ± ) is determined by B’=B n {h} [ {k} y( ± ) is a neighboring BFS of x, and B’ is a neighboring basis of B Unless ± =0 ) y( ± )=x. B’ is a neighboring basis but, y( ± ) is the same BFS. or ± = 1 ) feasible region unbounded in direction d. k is called “entering coordinate” h is called “leaving coordinate”

1.What is a corner point? (BFS and bases) 2.What if there are no corner points? (Infeasible) 3.What are the “neighboring” bases? (Increase one coordinate) 4.What if no neighbors are strictly better? 5.How can I find a starting feasible basis? 6.Does the algorithm terminate? 7.Does it produce the right answer? Local-Search Algorithm Let B be a feasible basis (if none, infeasible) For each neighboring basis B’ of B Compute BFS y defined by B’ If c T y>c T x then set x=y Halt

Finding better neighbors Consider LP max { c T x : Ax=b, x ¸ 0 } We have BFS x determined by basis B Find a neighbor: pick k  B, compute y( ± ) ( ± = max{ ² : y( ² ) feasible }) Is y( ± ) better?, c T y( ± )>c T x, c T (x+ ± d)>c T x, c T d>0 (Assuming ± >0) c T d is the benefit of increasing coordinate k (Might be negative) If ± =0 we have same BFS ) same objective value (y( ± )=x) Suppose c T d>0 If ± = 1, then LP is unbounded (y( ± ) feasible and c T y( ± )= 1 ) If 0 c T x) Concise expression for benefit – Recall: d B =-A B -1 A k, d k =1, and d i =0 8 i  B [ {k} ) Benefit of coordinate k is c T d = c k - c B T A B -1 A k

1.What is a corner point? (BFS and bases) 2.What if there are no corner points? (Infeasible) 3.What are the “neighboring” bases? (Increase one coordinate) 4.What if no neighbors are strictly better? (Might move to a basis that isn’t strictly better (if ± =0), but whenever x changes it’s strictly better) 5.How can I find a starting feasible basis? 6.Does the algorithm terminate? 7.Does it produce the right answer? Local-Search Algorithm Let B be a feasible basis (If none, Halt: LP is infeasible) For each k  B If “benefit” of coordinate k is > 0 Compute y( ± ) (If ± = 1, Halt: LP is unbounded) Find leaving variable h 2 B (y( ± ) h =0) Set x=y( ± ) and B’=B n {h} [ {k} Halt: return x

Example See