Magnetic Sources AP Physics C.

Slides:



Advertisements
Similar presentations
Magnetic Fields Due To Currents
Advertisements

Magnetic Fields and Forces
Magnetic Field due to a Current-Carrying Wire Biot-Savart Law
Torque on a Current Loop, 2
Sources of the Magnetic Field
Physics 1304: Lecture 12, Pg 1 The Laws of Biot-Savart & Ampere  dl I.
Chapter 22 Magnetism AP Physics B Lecture Notes.
Chapter 30 Sources of the magnetic field
Chapter 32 Magnetic Fields.
Chapter 22 Magnetism.
Phy 213: General Physics III Chapter 29: Magnetic Fields to Currents Lecture Notes.
Physics 121 Practice Problem Solutions 10 Magnetic Fields from Currents (Biot-Savart and Ampere’s Law) Contents: 121P10 - 1P, 5P, 8P, 10P, 19P, 29P,
Sources of Magnetic Field Chapter 28 Study the magnetic field generated by a moving charge Consider magnetic field of a current-carrying conductor Examine.
Dale E. Gary Wenda Cao NJIT Physics Department
Source of Magnetic Field Ch. 28
Ampere’s Law & Gauss’ Law
AP Physics C Chapter 28.  s1/MovingCharge/MovingCharge.html s1/MovingCharge/MovingCharge.html.
Sources of Magnetic Field
Lecture 9 Magnetic Fields due to Currents Chp. 30 Cartoon - Shows magnetic field around a long current carrying wire and a loop of wire Opening Demo -
Ampere’s Law AP Physics C Mrs. Coyle Andre Ampere.
Physics 121: Electricity & Magnetism – Lecture 11 Induction I Dale E. Gary Wenda Cao NJIT Physics Department.
The Magnetic Field of a Solenoid AP Physics C Montwood High School R. Casao.
AP Physics C Montwood High School R. Casao
MAGNETOSTATIC FIELD (STEADY MAGNETIC)
Magnetic Field Lines for a Loop Figure (a) shows the magnetic field lines surrounding a current loop Figure (b) shows the field lines in the iron filings.
Sources of the Magnetic Field
Magnetic Field and Magnetic Forces
(work005.jpg)
Chapter 19 Magnetism 1. Magnets 2. Earth’s Magnetic Field 3. Magnetic Force 4. Magnetic Torque 5. Motion of Charged Particles 6. Amperes Law 7. Parallel.
Van Allen Radiation Belts The Van Allen radiation belts consist of charged particles surrounding the Earth in doughnut-shaped regions. The particles are.
30.5 Magnetic flux  30. Fig 30-CO, p.927
Ampere’s Law The product of can be evaluated for small length elements on the circular path defined by the compass needles for the long straight wire.
CHECKPOINT: What is the current direction in this loop
1.Khurram Shahzad 2.DanIs H ussain 3.Bukhtyar Ali 4.Shah Mehmood 5.Farrukh Ali 6.Usman Akhtar.
AP Physics C III.D – Magnetic Forces and Fields. The source and direction of magnetic fields.
Physics 2102 Magnetic fields produced by currents Physics 2102 Gabriela González.
Magnetic Fields Due to Currents
CHAPTER OUTLINE 30.1 The Biot–Savart Law 30.2 The Magnetic Force Between Two Parallel Conductors 30.3 Ampère’s Law 30.4 The Magnetic Field of a Solenoid.
Sources of the Magnetic Field March 23, 2009 Note – These slides will be updated for the actual presentation.

Wednesday, Sep. 14, PHYS Dr. Andrew Brandt PHYS 1444 – Section 04 Lecture #5 Chapter 21: E-field examples Chapter 22: Gauss’ Law Examples.
22.7 Source of magnetic field due to current
Chapter 26 Sources of Magnetic Field. Biot-Savart Law (P 614 ) 2 Magnetic equivalent to C’s law by Biot & Savart . P. P Magnetic field due to an infinitesimal.
Lecture 28: Currents and Magnetic Field: I
© Shannon W. Helzer. All Rights Reserved. 1 Chapter 29 – Magnetic Fields Due to Current.
Quiz 1 Borderline Trouble Deep Trouble.
Magnetism. Magnets and Magnetic Fields Magnets have two ends – poles – called north and south. Like poles repel; unlike poles attract.
1 15. Magnetic field Historical observations indicated that certain materials attract small pieces of iron. In 1820 H. Oersted discovered that a compass.
AP Physics ST Solenoid Magnetic Flux Gauss’s Law in Magnetism
The magnetic field of steady current; The second kind of field which enters into steady of electricity and magnetism is, of course, the magnetic field.
Lecture 9 Magnetic Fields due to Currents Ch. 30 Cartoon - Shows magnetic field around a long current carrying wire and a loop of wire Opening Demo - Iron.
Chapter 24 Magnetic Fields.
Sources of the Magnetic Field
Magnetic Field due to a Current-Carrying Wire Biot-Savart Law
Exam 2: Tuesday, March 21, 5:00-6:00 PM
Lecture 9 Magnetic Fields due to Currents Ch. 30
Physics 2102 Lecture 16 Ampere’s law Physics 2102 Jonathan Dowling
Magnetic Sources AP Physics C.
CHECKPOINT: What is the current direction in this loop
Exam 2 covers Ch , Lecture, Discussion, HW, Lab
Announcements Tutoring available
Cross-section of the wire:
Magnetic Sources AP Physics C.
Magnetic Sources AP Physics C.
Magnetic Sources AP Physics C.
Magnetic Field Due To A Current Loop.
Magnetic Sources AP Physics C.
Magnetic Fields and Forces
Chapter 30 Examples 4,8.
Presentation transcript:

Magnetic Sources AP Physics C

Sources of Magnetic Fields In the last section, we learned that if a charged particle is moving and then placed in an EXTERNAL magnetic field, it will be acted upon by a magnetic force. The same is true for a current carrying wire. The reason the wire and/or particle was moved was because there was an INTERNAL magnetic field acting around it. It is the interaction between these 2 fields which cause the force. Can we define this INTERNAL magnetic field mathematically?

Biot-Savart Law (particles) The magnetic field surrounding a moving charge can be understood by looking at the ELECTRIC FIELD of a point charge. Here we see that the FIELD is directly related to the CHARGE and inversely related to the square of the displacement. The only difference in the case of the B-Field is that particle MUST be moving and the vectors MUST be perpendicular.

Biot-Savart Law (wires) dl B=? I This is for a current carrying element. The “dl” could represent a small amount of a wire. To find the ENTIRE magnetic field magnitude at a point away from the wire we would need to integrate over the length.

Biot-Savart Law (wires) Suppose we have a current carrying wire. A small current element of length “dl” is a distance “r” from a point directly above the wire at a distance “d”. What is the magnetic field of ALL the current elements if the wire is straight and infinitely long? B=? r d q I x dl

Biot-Savart Law (wires) The result is the same equation we learned in the previous section. However, we MUST realize that this is only for a wire that is straight and infinitely long.

Biot-Savart Law (wires) What is the equation for the magnitude of the magnetic field at the center of a current carrying loop? Knowing this can be used in conjunction with a tangent galvanometer to solve for the magnetic field of Earth.

Ampere’s Law & Gauss’ Law If you ENCLOSE a magnet, the # of field lines entering is EQUAL to the # of lines leaving, thus Gauss’ Law sets it equal to ZERO unlike the case for an electric field. Is there a way OTHER THAN the Biot-Savart Law to evaluate the magnetic field of a current carrying element? YES Much like Gauss’ Law, there is a way to determine the magnetic field of a current carrying element in a situation involving symmetry. The only thing that has to change is the PATH OF INTEGRATION and WHAT you are enclosing.

Ampere’s Law When using Gauss’ Law we used the FLUX, which had the ELECTRIC, FIELD, E, and the AREA, A, parallel. This also enclosed the charge. What 2 variables are parallel in this case and what are we enclosing? The MAGENTIC FIELD, B, and the actual PATH LENGTH, L, that the magnetic field travels around the wire are parallel. It is the wire’s CURRENT which is enclosed. The magnetic field and the PATH of the field are both directly related to the current.

Ampere’s Law When we SUM all of the current carrying elements around the PATH of a circle we get the circle’s circumference. dl B Once again we see we get the equation for the magnetic field around a long straight wire. I

Example A long straight wire of radius R carries a current I that is uniformly distributed over the circular cross section of the wire. Find the magnetic field both outside the wire and inside the wire. Let’s look at the OUTSIDE field, ro > R I ri ro R

Example A long straight wire of radius R carries a current I that is uniformly distributed over the circular cross section of the wire. Find the magnetic field both outside the wire and inside the wire. Let’s look at the INSIDE field, ri < R We first need to identify exactly what is the ENCLOSED current. It isn’t , “I”, but rather a FRACTION of “I”. I Since the current is distributed throughout the cross section we can set up a ratio of the currents as it relates to the cross sectional area. ri ro R

Example How could the magnetic field be graphically displayed? I ri ri ro ro R

Applications of Ampere’s Law – A Solenoid A solenoid is basically a bunch of loops of wire that are tightly wound. It is analogous to a capacitor which can produce a strong electric field. In this case it can produce a strong MAGNETIC FIELD. Solenoids are important in engineering as they can convert electromagnetic energy into linear motion. All automobiles use what is called a “starter solenoid”. Inside this starter is a piston which is pushed out after receiving a small amount of current from the car’s battery. This piston then completes a circuit between the car’s battery and starter motor allowing the car to operate.

Applications of Ampere’s Law – A Solenoid The first thing you must understand is what is the enclosed current. It is basically the current, I, times the # of turns you enclose, N. When you integrate all of the small current elements they ADD up to the length of the solenoid, L It is important to understand that when you enclose a certain amount of turns that the magnetic field runs through the center of the solenoid. As a result the field lines and the length of the solenoid are parallel. This is a requirement for Ampere’s Law.

Example A solenoid has a length L =1.23 m and an inner diameter d =3.55 cm, and it carries a current of 5.57 A. It consists of 5 close-packed layers, each with 850 turns along length L. What is the magnetic field at the center? 0.024 T