MODIS Aerosol Algorithm Validation, Updates and First Look at Aqua Lorraine Remer Yoram Kaufman Didier Tanré Robert Levy Rong-Rong Li Charles Ichoku J.

Slides:



Advertisements
Similar presentations
Validation of the 6S radiative transfer code for atmospheric correction of MODIS data MODIS ST Meeting, Land Discipline BreakoutMarch 24 th, 2005 Svetlana.
Advertisements

A Tutorial on MODIS and VIIRS Aerosol Products from Direct Broadcast Data on IDEA Hai Zhang 1, Shobha Kondragunta 2, Hongqing Liu 1 1.IMSG at NOAA 2.NOAA.
Collection 6 Aerosol Products Becoming Available
OMI ST meeting June 2008 Calibration & 0-1b data processing Marcel Dobber (KNMI)
Transition from MODIS AOD  VIIRS AOD
MODIS Atmosphere Solar Reflectance Issues 1. Aqua VNIR focal plane empirical re-registration status Ralf Bennartz, Bob Holz, Steve Platnick 2 1 U. Wisconsin,
What’s new in MODIS Collection 6 Aerosol Deep Blue Products? N. Christina Hsu, Rick Hansell, MJ Jeong, Jingfeng Huang, and Jeremy Warner Photo taken from.
A Tutorial on MODIS and VIIRS Aerosol Products from Direct Broadcast Data on IDEA Hai Zhang 1, Shobha Kondragunta 2, Hongqing Liu 1 1.IMSG at NOAA 2.NOAA.
Constraining aerosol sources using MODIS backscattered radiances Easan Drury - G2
Quantifying aerosol direct radiative effect with MISR observations Yang Chen, Qinbin Li, Ralph Kahn Jet Propulsion Laboratory California Institute of Technology,
European Geosciences Union General Assembly 2006 Vienna, Austria, 02 – 07 April 2006 Paper’s objectives: 1. Contribute to the validation of MODIS aerosol.
An Introduction to Using Angular Information in Aerosol Remote Sensing Richard Kleidman SSAI/NASA Goddard Lorraine Remer UMBC / JCET Robert C. Levy NASA.
Surface Reflectance over Land: Extending MODIS to VIIRS Eric Vermote NASA GSFC Code 619 MODIS/VIIRS Science Team Meeting, May.
Dust Detection in MODIS Image Spectral Thresholds based on Zhao et al., 2010 Pawan Gupta NASA Goddard Space Flight Center GEST/University of Maryland Baltimore.
The dark-target aerosol remote sensing from MODIS, circa 2011 Robert Levy (SSAI and NASA/GSFC) Shana Mattoo (SSAI and NASA/GSFC) Lorraine Remer (GSFC)
VALIDATION OF SUOMI NPP/VIIRS OPERATIONAL AEROSOL PRODUCTS THROUGH MULTI-SENSOR INTERCOMPARISONS Huang, J. I. Laszlo, S. Kondragunta,
An Introduction to Using Spectral Information in Aerosol Remote Sensing Richard Kleidman SSAI/NASA Goddard Lorraine Remer UMBC / JCET Robert C. Levy NASA.
GOCART Model Study of Anthropogenic Aerosol Radiative Forcing Mian Chin NASA Goddard Space Flight Center.
Orbit Characteristics and View Angle Effects on the Global Cloud Field
MODIS Science Team Meeting
New Products from combined MODIS/AIRS Jun Li, Chian-Yi Liu, Allen Huang, Xuebao Wu, and Liam Gumley Cooperative Institute for Meteorological Satellite.
Robert C. Levy (NASA-GSFC)
The Role of Aerosols in Cloud Growth, Suppression, and Precipitation: Yoram Kaufman and his Contributions  Aerosol optical & microphysical properties.
Collection 6 update: MODIS ‘Deep Blue’ aerosol Andrew M. Sayer, N. Christina Hsu, Corey Bettenhausen, Myeong-Jae Jeong, Jaehwa Lee.
6 February 2014Hyer AMS 2014 JCSDA Preparation for assimilation of aerosol optical depth data from NPP VIIRS in a global aerosol model Edward J. Hyer 1.
Advances in Applying Satellite Remote Sensing to the AQHI Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar, Akhila Padmanabhan, Dalhousie.
GOES and GOES-R ABI Aerosol Optical Depth (AOD) Validation Shobha Kondragunta and Istvan Laszlo (NOAA/NESDIS/STAR), Chuanyu Xu (IMSG), Pubu Ciren (Riverside.
MODIS Retrievals for the Amazon Rainforest Dan Sauceda.
In Situ and Remote Sensing Characterization of Spectral Absorption by Black Carbon and other Aerosols J. Vanderlei Martins, Paulo Artaxo, Yoram Kaufman,
GE0-CAPE Workshop University of North Carolina-Chapel Hill August 2008 Aerosols: What is measurable and by what remote sensing technique? Omar Torres.
Monitoring aerosols in China with AATSR Anu-Maija Sundström 2 Gerrit de Leeuw 1 Pekka Kolmonen 1, and Larisa Sogacheva 1 AMFIC , Barcelona 1:
“Surface Reflectance over Land in Collection 6” Eric Vermote NASA/GSFC Code 619
Robert Levy (NASA-GSFC)
Characterization of Aerosols using Airborne Lidar, MODIS, and GOCART Data during the TRACE-P (2001) Mission Rich Ferrare 1, Ed Browell 1, Syed Ismail 1,
QA filtering of individual pixels to enable a more accurate validation of aerosol products Maksym Petrenko Presented at MODIS Collection 7 and beyond Retreat.
Aerosol_cci ECV. Aerosol_cci > Thomas Holzer-Popp > ESA Living Planet Symposium, Bergen, 1 July 2010 slide 2 Major improvements over precursor AOD datasets.
Characterization and Evaluation of NPP VIIRS Aerosol EDR Performance Based Upon Prelaunch Analysis N. Christina Hsu (NASA/GSFC) Istvan Laszlo (NOAA/STAR)
As components of the GOES-R ABI Air Quality products, a multi-channel algorithm similar to MODIS/VIIRS for NOAA’s next generation geostationary satellite.
Satellite Aerosol Validation Pawan Gupta NASA ARSET- AQ – GEPD & SESARM, Atlanta, GA September 1-3, 2015.
1 N. Christina Hsu, Deputy NPP Project Scientist Recent Update on MODIS C6 Deep Blue Aerosol Products and Beyond N. Christina Hsu, Corey Bettenhausen,
Synergy of MODIS Deep Blue and Operational Aerosol Products with MISR and SeaWiFS N. Christina Hsu and S.-C. Tsay, M. D. King, M.-J. Jeong NASA Goddard.
Characterization of Aerosol Data Quality from MODIS for Coastal Regions Jacob Anderson Mentor: Gregory Leptoukh.
High Resolution MODIS Aerosols Observations over Cities: Long Term Trends and Air Quality.
Validation strategy for aerosol retrievals of the future Lorraine Remer and J. Vanderlei Martins Dec
Cloud Optical & Microphysical Properties (M. D. King, S. Platnick, M
Initial Analysis of the Pixel-Level Uncertainties in Global MODIS Cloud Optical Thickness and Effective Particle Size Retrievals Steven Platnick 1, Robert.
0 0 Robert Wolfe NASA GSFC, Greenbelt, MD GSFC Hydrospheric and Biospheric Sciences Laboratory, Terrestrial Information System Branch (614.5) Carbon Cycle.
Aerosol Radiative Forcing from combined MODIS and CERES measurements
MODIS Atmosphere Data Products and Science Results Steven Platnick 1,2 Michael D. King, 2 W. Paul Menzel, 3 Yoram J. Kaufman, 2 Steve Ackerman, 4 Didier.
1 Validated Stage 1 Science Maturity Review for Surface Reflectance Eric Vermote Sept 04, 2014.
Optical Properties in coastal waters change rapidly on very fine spatial scales. The existence of multiple ocean color systems provides a unique capability.
Data acquisition From satellites with the MODIS instrument.
Impact of 3D Clouds on Aerosol Retrievals Guoyong Wen 1,2 Alexander Marshak 1 Robert F. Cahalan 1 Lorraine Remer 1 Richard Kleidman 1,3 1 NASA/Goddard.
MODIS Atmosphere Level-3 Product & Web Site Review Paul A. Hubanks Science Systems and Applications, Inc.
Preliminary Analysis of Relative MODIS Terra-Aqua Calibration Over Solar Village and Railroad Valley Sites Using ASRVN A. Lyapustin, Y. Wang, X. Xiong,
Pushing the limits of dark-target aerosol remote sensing from MODIS Robert C. Levy (SSAI and 613.2) Contributors: S. Mattoo (SSAI), L. Remer (NASA), R.
MODIS Atmosphere Products: The Importance of Record Quality and Length in Quantifying Trends and Correlations S. Platnick 1, N. Amarasinghe 1,2, P. Hubanks.
The Use of Spectral and Angular Information In Remote Sensing
Lorraine Remer, Yoram Kaufman, Didier Tanré Shana Mattoo, Richard Kleidman, Robert Levy Vanderlei Martins, Allen Chu, Charles Ichoku, Rong-Rong Li, Ilan.
Spatial & Temporal Distribution of Cloud Properties observed by MODIS: Preliminary Level-3 Results from the Collection 5 Reprocessing Michael D. King,
MODIS Atmosphere Group Summary Collection 5 Status Collection 5 Status  Summary of modifications and enhancements in collection 5 (mostly covered in posters)
Retrieving sources of fine aerosols from MODIS/AERONET observations by inverting GOCART model INVERSION: Oleg Dubovik 1 Tatyana Lapyonok 1 Tatyana Lapyonok.
1 Y. Kaufman, L. Remer, M. Chin, NASA; Didier Tanré, CNRS, Univ. of Lille Aerosol measurements & models MODIS & AERONET vs. GOCART.
Vicarious calibration by liquid cloud target
Remote Sensing of Cloud, Aerosol, and Land Properties from MODIS
Remote Sensing of Aerosols
Remote Sensing of Aerosols
Using dynamic aerosol optical properties from a chemical transport model (CTM) to retrieve aerosol optical depths from MODIS reflectances over land Fall.
DREAM dust forecast: case December 22nd 2009
Assessment of Satellite Ocean Color Products of the Coast of Martha’s Vineyard using AERONET-Ocean Color Measurements Hui Feng1, Heidi Sosik2 , and Tim.
Presentation transcript:

MODIS Aerosol Algorithm Validation, Updates and First Look at Aqua Lorraine Remer Yoram Kaufman Didier Tanré Robert Levy Rong-Rong Li Charles Ichoku J. Vanderlei Martins Allen Chu Shana Mattoo Oleg Dubovik Zia Ahmad Richard Kleidman

Validation Updates Implemented: - extension over land Updates to be Delivered : - sediment mask - adjustments to cloud mask - dust replacement (over glint!) - new land models On the horizon: - non-spherical dust models First looks at Aqua

GRL special section Ichoku et al. (2002) Martins et al. (2002) Chu et al. (2002) Remer et al. (2002) Frequency (%) Absolute Variance clouds aerosols

N = % within error bars N=86 77% within error bars

Nwithin error ___________________________ France_land33277% US east28256% NA_west16885% Med_land13960% Brazil10282% US central10072% SAFARI8972% East_Europe5884% Asia4564% AERONET data from stations operated by the following PI’s: B. Holben, C. McLain (SIMBIOS), D. Tanré Analysis by R. Levy and L. Remer

Nwithin error ___________________________ Med_ocean22259% US_Atlantic8677% Saharan6337% AERONET data from stations operated by the following PI’s: B. Holben, C. McLain (SIMBIOS), D. Tanré Analysis by R. Levy and L. Remer

Land: N= % of retrievals within expected error Ocean: N=371 68% of retrievals within expected error Validation of Aerosol Optical Thickness 

Land algorithm: “dark targets” But how dark is “dark” ? Year 2000 Day 233 Time 0835 Location: southern Africa, east coast OLD NEW Following a suggestion by E. Vermote, we increase the  2.1 threshold from 0.25 to 0.40 at nadir (and even higher at larger view angle). From the extended threshold, we derive in the blue and extrapolate to the red. In this example the new version increases the number of retrievals over land from 7060 to 17,849. For the 285 granules collected over southern Africa during the SAFARI campaign, V3.1.0 increases the number of land retrievals by 130%.

Eight day means. Same dates, Different years Images cropped from MODIS Atmospheres web site Created by P. Hubanks

Sediment Mask Li et al., submitted to IEEE TGARS

Sediment Mask Li et al. submitted to IEEE TGARS

Sediment Mask

operational new sediment mask

Updates: Cloud mask for aerosol retrievals spatial variability before: 3x3 window advances as a block now: 3x3 window advances every pixel high AOT cutoff before: fill value for AOT > 5.0 now: threshold on  0.47, not AOT regaining retrievals in dust before: lost high dust values now: r0.47/r0.66 separates dust from clouds dust over glint before: no retrievals over glint now: r0.47/r0.66 < 0.95 we retrieve heavy dust over glint J.V. Martins et al. in preparation

Retrieving heavy dust over glint J.V. Martins et al., in preparation

In 1493 C.E., Pope Alexander VI divided the world with an arbitrary line. Portugal Spain In 1995, Yoram Kaufman divided the world again, with many arbitrary lines.

Operational aerosol models (1995 knowledge)  o = 0.90  o = 0.96

Ichoku et al. (in revision): SAFARI 2000 special issue

 o = / /0.90 New Aerosol Models based on 2002 information AERONET and Dubovik et al. (2002) Analysis by L.Remer and D.A. Chu

Retrieving non-spherical dust aerosol M. Meier and J. Reid Nwithin error ___________________________ US_Atlantic8677% Med_ocean22259% Saharan6337%

Terra: 16:10 UTCAqua: 17:45 UTC Prepared by R. Levy MODIS: June 25, 2002

MODIS Terra & Aqua AOT over land MODIS Terra & Aqua AOT over ocean By C. Ichoku (July 2002)

Summary (page 1) The primary aerosol products are valid within pre-launch error estimations. First operational retrieval of aerosol over land. First ever. Improvement of aerosol over ocean retrieval from AVHRR. (  AVHRR =0.04  MODIS =0.02)

No. Not every retrieval is perfect. Yes. We are making updates. Some of these changes are to ‘fix’ small issues: sediments Some of these changes are to ‘re-call’ retrievals: dust in glint, extension over land. Fine mode/Coarse mode is a significant step forward. Non-spherical phase functions will be a major innovation, but not ready for collection 4. Qualitatively, Aqua looks good. Summary (page 2)