1 SITAEL2015-2030 NUOVI ORIZZONTI DELLO SPAZIO 20 marzo 2015 Grandi costellazioni di piccoli satelliti Roberto Battiston Agenzia Spaziale Italiana.

Slides:



Advertisements
Similar presentations
Istituto di Fisica dello Spazio Interplanetario V. Iafolla, E. Fiorenza, C. Lefevre, S. Nozzoli, R. Peron, M. Persichini, A. Reale, F. Santoli Istituto.
Advertisements

AMSAT-NA FOX Satellite Program Review, Status, and Future JERRY BUXTON, NØJY AMSAT VP-ENGINEERING.
Israeli Universal Spacecraft Bus Characteristics and Design Trade-Offs
© 2007 Eltronic A/S Facilities 2010 in Hedensted.
POLICY Space Export Controls Update Since Delivering the 1248 Report to Congress - April 2012 −Congress added language into the FY13 National Defense Authorization.
Understanding the Systems Engineering Process
Delta II –7920 Fitup Study Model TMA-56 f10 optics In-Line configuration Delta II Launch Vehicle 7920 H 10L Composite Fairing.
Low Energy, Low Cost Swift A design experiment June 2010.
1 GAIA System Level Technical Reassessment Study Final Presentation ESTEC, April 23rd 2002 Part 1b Development & AIV.
Laura Jones Swati Mohan 11/21/14. ◦ Different class of ACS hardware and software  Limited mass, power, processing ◦ Different dynamical regime  Testbeds.
The Lander is at a 25 km Lunar altitude and an orbital period of approximately 110 minutes. After separation occurs the Lander is completely self sufficient.
By Matthew Patterson. L ow E arth O rbit N anosatellite I ntegrated D istributed A lert S ystem.
METEOR BACKGROUND This is a foundation project in an ambitious endeavor to provide the RIT research community with a means to conduct near space.
Surrey Space Centre, University of Surrey, Guildford, Surrey, GU2 7XH ESA Wireless Sensor Motes Study George Prassinos, SSC, University of Surrey.
Gateway to Space AJ - 1 Mechanical System Design & the StarLight Project Andy Jarski Mechanical Systems Engineer Ball Aerospace & Technologies.
Success cases in the collaboration between University and Industry Piero G. Maranesi Università degli Studi di Milano Dept. of Physics – Electronic Section.
Part II AUTOMATION AND CONTROL TECHNOLOGIES
S/C System Design Overview Robert G. Melton Department of Aerospace Engineering.
Energy Transformations in a Cell Phone
Launching, Orbital Effects & Satellite Subsystems
FluxDemon FluxDemonSat Fluxgate Magnetometer Core Technology Demonstrator Feasibility Review Student Design Team: Farita Tasnim, Shivani Upadhayay, Jinny.
1 Formation Flying Shunsuke Hirayama Tsutomu Hasegawa Aziatun Burhan Masao Shimada Tomo Sugano Rachel Winters Matt Whitten Kyle Tholen Matt Mueller Shelby.
ReVeal Passive Illumination by Radar (PAIR). Overview Payload / Mission Communication Launch Orbit Power Thermal Attitude Propulsion Finance.
USAFA Department of Astronautics I n t e g r i t y - S e r v i c e - E x c e l l e n c e Astro 331 Electrical Power Subsystem—Intro Lesson 19 Spring 2005.
Tielong Zhang On behalf of the CGS Team in the Institute of Geology and Geophysics, Chinese Academy of Science Spacecraft System and Payload China Geomagnetism.
Tierra Holcomb Found. Tech 3B.  A solar panel (also solar module, photovoltaic module or photovoltaic panel) is a packaged, connected assembly.
Attitude Determination and Control System (ADCS)
Satellites and Launch Vehicles. “Gee Whiz” Facts Number of satellites currently in orbit is over 900 Satellites orbit at altitudes from 100 miles (Low.
CERES – Atelier Vol en formation pour l’astrophysique et la physique solaire 17 Octobre ASPICS 2 - Formation Flying for Solar Physics 100 m +/-
STEC2005 – Jan H. Hales – 8 th of April 2005 MEMS in Space Jan H. Hales MIC – Department of Micro and Nanotechnology Technical University.
Dynamics and Control of Space Vehicles
Contractor 3. I. Launch III. Formation Alignment with Star Pictures Data downlink Stationkeeping II. Deployment IV. Deorbit.
Getting into Space (16.1, 16.3) BLM Getting into Space (16.1) Read p How do aircraft fly? 2.How do spacecraft fly? 3.What is the difference.
AAE450 Spring 2009 Slide 1 of 7 Final Presentation Slides Ian Meginnis April 9, 2009 Group Leader - Power Systems Phase Leader - Translunar Injection OTV.
AAE450 Spring 2009 Slide 1 of 8 Final Presentation Back-up Slides Orbital Transfer Vehicle (OTV) Power and Thermal Control Ian Meginnis Ian Meginnis Power.
Problem Statement Overview of tasks Requirements for selection test.
Semester 3Semester 4 Mechanical Energy Earth Science Physical Chemistry 2 Active Circuits 1 Sci Maths 3 OR Eng Maths 3 Electrical Energy Thermal Physics.
What is the Universe?.
Chapter 13 Section 3 – pg 515 Exploring Space Today.
GIST 24 Meeting GERB Hardware Status 14 th December 2005 Eric Sawyer.
1 Weekly Summary Weekly Summary Formation Flight AEM4332 Spring Semester March 7,2007 Masao SHIMADA.
Haripriya Head, Integration Team Pratham, IIT Bombay 19 th June, 2010.
HokieSat Introduction
SATURN Antonette S Library Research Project November 12, 2015.
The Space in Aerospace and Ocean Engineering Courses HokieSat Labs Vomit Comet New Projects Chris Hall, Randolph 224D
CubeSat Design for Solar Sail Testing Applications Phillip HempelPaul Mears Daniel ParcherTaffy Tingley October 11, 2001The University of Texas at Austin.
Space Environment September 30,2003 H. Kirkici Istanbul Technical University Lecture-3 Summary Vacuumsolar UV degradation contamination Neutral:Mechanical.
Characteristics of remote sensing satellites. Satellites generally vary in their architecture Usually remote sensing satellites are having two plateforms.
Amy Blas Hawaii Space Flight Laboratory University of Hawaii.
Mini Autonomous Flying Vehicle CASDE is part of the National effort to develop a Micro Air Vehicle. CASDE has chosen a Mini Vehicle, in the short term,
Did you know that solar power was used for thousands of years? In the 1940’s, Edmond Becquerel discovered photovalic activity, which means that the electric.
Lucy Exploring Jupiter’s Trojans Peter Haun and Cari Schuette.
QTYUIOP THERMIONIC SPACE POWER THE EMERGING SOURCE OF SPACE POWER IN THE NEXT DECADE AUBURN UNIVERSITY AUGUST 17, 1999.
Status of EPS Battery configuration finalized Solar panel layout –finalized Solar panel Substrate is ready for bonding EM – fabricated and Completed the.
©2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist.
Engineering and Science Directorate Organization Structure June 2016.
14ME404 INTRODUCTION TO MEMS DISCIPLINE ELECTIVE-II Thanking everyone for MEMS as an elective subject Dr.J.S.Senthilkumaar, Professor Mechanical Engineering.
Spacecraft Technology Structure
Part II AUTOMATION AND CONTROL TECHNOLOGIES
USNA Standard CubeSat Bus USNA-P1 CubeSat (USNA-14)
Agenzia Spaziale Italiana ASI Perspectives from
Integrated Thermal Analysis of the Iodine Satellite (iSAT) from Preliminary to Critical Design Review October 20th 2016 Stephanie Mauro NASA Marshall Space.
James Webb Space Telescope
Ch6: Gravitational Fields
Solar Energy.
Lunar Descent Trajectory
STARSHINE on Station Conceptual Configurations
Inés García and Candela Suárez
THERMAL CONTROL SYSTEM
Environment Thermal Power Opole
Presentation transcript:

1 SITAEL NUOVI ORIZZONTI DELLO SPAZIO 20 marzo 2015 Grandi costellazioni di piccoli satelliti Roberto Battiston Agenzia Spaziale Italiana

Currently 71 in orbit Planet.com: January 2014, 28 satellites (DOVES) launched from the ISS

Results

Scenario Mondiale e Gap Nazionale Do not reproduce and distribute without permission 4/## MISSIONI IN CORSO LIFE TIME > 3 ANNI

 Scenario Mondiale e Gap Nazionale;  Maturità Tecnologica Nazionale;  Vantaggi;  Sfide e Rischi  Conclusioni;

Power Gen & Mngm Commd & Data Handling Thermal Control Systems AOCS Structures, Materials and Mechanisms Propulsion Communications Payload Maturità Tecnologica Nazionale Do not reproduce and distribute without permission THIN SOLAR CELLS GaN COMPONENTS INTEGRATED TELECOM SYSTEMS MANUFACTURING TESTING MINI THRUSTER SENSORS DATA HANDLING OPTICAL COMPONENTS SUN SENSOR ON CHIP ROBOTICS MMIC OPTICAL HEADS GaN COMPONENTS MITA GaN COMPONENTS METROLOGY DOCKING SOLAR PANEL MMIC ELECTRIC PROPULSION FORMATION FLYING HET FEEP OPTICAL SOLAR REFLECTOR ACTUATORS ASIC <1 kg10 kg – 1 kg100 kg – 10 kg 500 kg – 100 kg Minisatellite Nanosatellite Micro satelliteFemto & Picosatellite

Do not reproduce and distribute without permission 7/## SFIDE Istituzionale/Filiera Focalizzazione dell’intervento istituzionale al recupero del gap tecnologico Forte cooperazione industriale con accordi di partnerariato di lungo termine e conseguente integrazione sistemica Missione Small satellites anche per missioni non-LEO. Incentivare lo sfruttamento trasversale degli achievement tecnologici e di sistema Sistema Approccio integrato P/L –P/F e Space-Ground Lanci a basso costo Challenges tecnologiche Power management & generation AOCS Capacità di data rate Utilizzo di commercial off the shelf (COTS) components/consumer electronics RISCHI Carenza di opportunità come piggy back/ritardo operativo e incertezza di orbita Capacità di controllo orbitale per classi nano-pico – pericolo debris/collisione Sfide e Rischi

VANTAGGI Competitività: Lanci multimissione e piggy back Mission tailored systems Basso costo di integrazione e lancio Miglioramento dell’integrabilità dei componenti attraverso la miniaturizzazione System enhancement: Ampliamento del portafoglio applicativo e valorizzazione degli asset nazionali (Cosmo, VEGA, Athena Fidus, CNM) Refocusing delle infrastrutture esistenti per le emergenze Target di lungo periodo “fractionated mission architectures” – Affidabilità, payload distribuiti riconfigurablità In orbit servicing

Do not reproduce and distribute without permission

Conclusioni Le tecnologie correnti permettono la realizzazione di missioni operative con prestazioni adeguate nella fascia dei mini e micro satelliti in funzione delle caratteristiche di scalabilità dei payload; Il percorso verso i mini e micro satelliti è obbligato dalle risorse limitate e dalla necessità di mantenere il sistema industriale nazionale competitivo; Vi sono grandi potenzialità per il sistema della ricerca e dell’ università, nuove tecnologie ma anche nuovo modo di vedere e pensare lo spazio e le sue applicazioni. I sistemi attuali permettono di concepire missioni con piccoli satelliti oltre LEO stimolando un ampio scenario scientifico e applicativo;

Conclusioni Un considerevole salto tecnologico è necessario per la piena operatività nelle fasce dei Nano e Pico satelliti di cui deve essere valorizzato l’aspetto di precursori tecnologici. L’ Italia con la sua filiera manifatturiera che va dai lanciatori, ai satelliti, passando per l’ ottica, i radar, le telecomunicazioni, gli UAV, ha un grande potenziale nel settore delle costellazioni di piccoli satelliti L’ ASI ha iniziato uno studio assieme all’ ESA per Definire lo stato dell’ arte a livello mondiale Identificare una roadmap per lo sviluppo di costellazioni Sostenere le attività di sviluppo tecnologico, scientifico e industriale nazionale per colmare il gap attuale e posizionarsi tra i player mondiali in un contesto internazionale carattrizzato da un grandissimo dinamismo

Welcome to the future !