The BPT diagram and mass-metallicity relation at z~2.3: Insights from KBSS-MOSFIRE Steidel et al. (2014) - Strong nebular line ratios in the spectra of.

Slides:



Advertisements
Similar presentations
Star formation histories and environment Bianca M. Poggianti INAF – Osservatorio Astronomico di Padova WE ARE ALL AFTER THE BIG PICTURE: 1)To what extent,
Advertisements

Herschel observations: contraints on dust attenuation and star formation histories at high redshift Véronique Buat Laboratoire dAstrophysique de Marseille.
Stellar-mass Metallicity Relation at High Redshifts Stellar-mass Metallicity Relation at z~1. 4 Kouji OHTA ( Kyoto University ) K. Yabe, F. Iwamuro, S.
Brightnesses, sizes and motions of stars. Recap Canvas assignment due Friday Project: due Friday 11/21 Campus observatory Emission and absorption lines.
UNDERSTANDING METALLICITY AT HIGH REDSHIFT UNIVERSE KENTARO MOTOHARA (IOA, UNIVSERSITY OF TOKYO)
Quenched and Quenching Galaxies at Low to High Redshifts S.M. Faber & UCSC and CANDELS collaborators Dekel60 Fest December 13, 2011 M31: UV GALEX.
An Evolutionary Connection between AGNs and GALEX UV-excess Early-type Galaxies Hyun-Jin Bae*, Kiyun Yun, Yumi Choi, and Suk-Jin Yoon Department of Astronomy.
A Large Catalogue of Ultraluminous X-ray Source Candidates in Nearby Galaxies Madrid: 2010 DOM WALTON IoA, Cambridge, UK In collaboration with Jeanette.
Digging into the past: Galaxies at redshift z=10 Ioana Duţan.
STAR-FORMING DWARF GALAXIES: Evolutionary self-consistent models Mariluz Martín-Manjón Mercedes Mollá Ángeles Díaz Roberto Terlevich VII Workshop Estallidos,
AGN Eddington Ratio Distributions
Dust and Stellar Emission of Nearby Galaxies in the KINGFISH Herschel Survey Ramin A. Skibba Charles W. Engelbracht, et al. I.
RESULTS AND ANALYSIS Mass determination Kauffmann et al. determined masses using SDSS spectra (Hdelta & D4000) Comparison with our determination: Relative.
Optical and Near-IR Luminosity-Metallicity Relations of Star-Forming Emission-Line Galaxies Janice C. Lee University of Arizona John Salzer Wesleyan University.
Gamma-ray Bursts in Starburst Galaxies Introduction: At least some long duration GRBs are caused by exploding stars, which could be reflected by colours.
Abundances in the BLR Nathan Stock February 19, 2007.
Dark Matter and Galaxy Formation Section 4: Semi-Analytic Models of Galaxy Formation Joel R. Primack 2009, eprint arXiv: Presented by: Michael.
Eight billion years of galaxy evolution Eric Bell Borch, Zheng, Wolf, Papovich, Le Floc’h, & COMBO-17, MIPS, and GEMS teams Venice
1 The Population and Luminosity Function of AGNs from SDSS Lei Hao Collaborators: Michael Strauss SDSS collaboration Princeton University Carnegie Symposium.
Growth of Structure Measurement from a Large Cluster Survey using Chandra and XMM-Newton John R. Peterson (Purdue), J. Garrett Jernigan (SSL, Berkeley),
SFR and COSMOS Bahram Mobasher + the COSMOS Team.
“ Testing the predictive power of semi-analytic models using the Sloan Digital Sky Survey” Juan Esteban González Birmingham, 24/06/08 Collaborators: Cedric.
C. Halliday, A. Cimatti, J. Kurk, M. Bolzonella, E. Daddi, M. Mignoli, P. Cassata, M. Dickinson, A. Franceschini, B. Lanzoni, C. Mancini, L. Pozzetti,
Neil Trentham September 7, 2004 What fraction of stars formed in infrared galaxies? Giavalisco et al
Evolution of Galaxy groups Michael Balogh Department of Physics University of Waterloo.
Establishing the Connection Between Quenching and AGN MGCT II November, 2006 Kevin Bundy (U. of Toronto) Caltech/Palomar: R. Ellis, C. Conselice Chandra:
Dissecting the Red Sequence: Stellar Population Properties in Fundamental Plane Space Genevieve J. Graves, S. M. Faber University of California, Santa.
New Insight Into the Dust Content of Galaxies Based on the Analysis of the Optical Attenuation Curve.
Optical Spectroscopy of Distant Red Galaxies Stijn Wuyts 1, Pieter van Dokkum 2 and Marijn Franx 1 1 Leiden Observatory, P.O. Box 9513, 2300RA Leiden,
1 GALEX Angular Correlation Function … or about the Galactic extinction effects.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
A spectroscopic survey of the 3CR sample of radio galaxies Authors: Sara Buttiglione (SISSA - Trieste), Alessandro Capetti (INAF – Osservatorio Astronomico.
Past, Present and Future Star Formation in High Redshift Radio Galaxies Nick Seymour (MSSL/UCL) 22 nd Nov Powerful Radio Galaxies.
Full Spectral Analysis of Galaxies - Are we there yet? Ben Panter, Edinburgh
Conference “Summary” Alice Shapley (Princeton). Overview Multitude of new observational, multi-wavelength results on massive galaxies from z~0 to z>5:
How Standard are Cosmological Standard Candles? Mathew Smith and Collaborators (UCT, ICG, Munich, LCOGT and SDSS-II) SKA Bursary Conference 02/12/2010.
Brightnesses, sizes and motions of stars Recap Project: due Friday 11/21 Campus observatory Information from brightnesses of stars – Brightness depends.
Scaling Relations in HI Selected Star-Forming Galaxies Gerhardt R. Meurer The Johns Hopkins University Gerhardt R. Meurer The Johns Hopkins University.
The Accretion History of SMBHs in Massive Galaxies Kate Brand STScI Collaborators: M. Brown, A. Dey, B. Jannuzi, and the XBootes and Bootes MIPS teams.
MNRAS, submitted. Galaxy evolution Evolution in global properties reasonably well established What drives this evolution? How does it depend on environment?
IZI: INFERRING METALLICITIES AND IONIZATION PARAMETERS WITH BAYESIAN STATISTICS Guillermo A. Blanc Universidad de Chile.
GLAST GRB Science Group First GLAST Symposium, Stanford February 7, 2007 Elisabetta Bissaldi *, Francesco Longo ‡, Francesco Calura †, Francesca Matteucci.
The dynamics of the gas regulator model and the implied cosmic sSFR-history Yingjie Peng Cambridge Roberto Maiolino, Simon J. Lilly, Alvio Renzini.
AGN feedback in action: constraints on the scaling relations between BH and galaxy at high redshift Andrea Merloni (EXC, MPE) A. Bongiorno (MPE), COSMOS.
Spitzer Imaging of i`-drop Galaxies: Old Stars at z ≈ 6 Laurence P. Eyles 1, Andrew J. Bunker 1, Elizabeth R. Stanway 2, Mark Lacy 3, Richard S. Ellis.
Host Galaxies of Gamma-Ray Bursts Emily Levesque University of Colorado at Boulder March 15, 2012.
A Steep Faint-End Slope of the UV LF at z~2-3: Implications for the Missing Stellar Problem C. Steidel ( Caltech ) Naveen Reddy (Hubble Fellow, NOAO) Galaxies.
Stellar Population Mass Estimates Roelof de Jong (STScI AIP) Eric Bell (MPIA Univ. of Michigan)
联 合 天 体 物 理 中 心 Joint Center for Astrophysics The half-light radius distribution of LBGs and their stellar mass function Chenggang Shu Joint Center for.
Galaxy evolution in z=1 groups The Gemini GEEC2 survey Michael Balogh Department of Physics and Astronomy University of Waterloo.
[OII] Lisa Kewley Australian National University.
AKARI Spectroscopic Study of the Rest-frame Optical Spectra of Quasars at 3.5 < z < 6.5 Hyunsung Jun¹, Myungshin Im¹, Hyung Mok Lee², and the QSONG team.
Nature of Broad Line Region in AGNs Xinwen Shu Department of Astronomy University of Science and Technology of China Collaborators: Junxian Wang (USTC)
AGN in the VVDS (Bongiorno, Gavignaud, Zamorani et al.) 1.What has been done: main results on Type 1 AGN evolution and accretion properties of faint AGN.
The Mid-Infrared Luminosities of Normal Galaxies over Cosmic Time (discussion of arXiv: ) Urtzi Jauregi Astro debata,
Spectral classification of galaxies of LAMOST DR3
A spectroscopic study of the 3CR sample of radio galaxies
Genevieve J. Graves University of California, Santa Cruz
A Survey of Starburst Galaxies An effort to help understand the starburst phenomenon and its importance to galaxy evolution Megan Sosey & Duilia deMello.
From: The evolution of star formation activity in galaxy groups
Possibility of UV observation in Antarctica
The Stellar Population of Metal−Poor Galaxies at z~1
Specific Star Formation Rates to z=1.5
QSO2 and their host galaxies
On the
Galactic Astronomy 銀河物理学特論 I Lecture 3-4: Chemical evolution of galaxies Seminar: Erb et al. 2006, ApJ, 644, 813 Lecture: 2012/01/23.
SDSS-IV MaNGA: The Spatial Distribution of Star Formation and its Dependence on Mass, Structure and Environment (arXiv: v1) 胡 宁
Authod: Ryan L. Sanders et al.(2018)
Metallicity Evolution of Active Galactic Nuclei
Borislav Nedelchev et al. 2019
Presentation transcript:

The BPT diagram and mass-metallicity relation at z~2.3: Insights from KBSS-MOSFIRE Steidel et al. (2014) - Strong nebular line ratios in the spectra of z=2-3 star-forming galaxies: First results from KBSS-MOSFIRE - arXiv: Obtained rest-frame optical spectroscopy of 251 emission-line galaxies between 2.0 < z < 2.6 from Keck. 8.6 < log(M * /M ʘ ) < < SFR [M ʘ /yr] < ≤ Z g (O3N2) ≤ 8.6 The star-forming sequence on the BPT diagram at z~2.3 is shifted upwards with respect to that at z=0. This is due to a) higher ionisation parameter, b) harder ionising radiation field (i.e. higher T eff ), and c) higher N/O. The mass-metallicity relation (MZR) at z~2.3 is lower than that at z=0 by ~0.32 dex, at all stellar masses. The dependence of Z g on SFR is much weaker than at z=0, suggesting no FMR extension to these redshifts. Fig. 1 Fig. 2 1

The BPT diagram at z~2.3: Fig. 3 High-z galaxies (symbols) lie above the z=0 relation from SDSS (grey points). See also Brinchmann+08, Kewley+13b. The scatter around the best fit (orange line) is similar to that at z=0 (~0.1 dex). This shift away from the local relation implies that locally calibrated strong- line diagnostics will give inconsistent values of Z g at higher redshift. This is because galaxies no longer lie on the expected 1D relations (red curves)… BPT diagram at z=0: Can be used to distinguish star- forming galaxies (along main ridge, e.g. red lines) from AGN hosts (high [OIII]/Hβ and high [NII]/Hα). See e.g. Kewley+01, Kauffmann+03c. Also tells us about metallicity distribution, as Z g for SF galaxies increases to the bottom-right of the plot. 2 Increasing Z g

The BPT diagram at z~2.3: …for example, the N2 diagnostic provides a higher Z g than the O3N2 diagnostic at z~2.3, even when calibrated to the same low-z sample of T e galaxies (Pettini & Pagel 04). Therefore, conversions between different diagnostics calibrated at z=0 (e.g. Kewley & Ellison 08) are not applicable at higher z (see also Cullen+14). This is a problem for studies of MZR and FMR evolution (e.g. Maiolino+08; Mannucci+10). Fig. 4 3 Using photoionisation models, Steidel+14 found that both higher ionisation parameter, Γ, and higher T eff are required to reproduce observations at z~2.3 (i.e. match Figs. 3 and 4). n e =1000 cm -3, -2.9 < log(Γ) < -1.8, and T eff ~50000 K are required. However, note the small dependence of BPT position on Z g at fixed Γ in Fig. 5… Are strong- line diagnostics mainly tracing Γ and/or T eff at high-z? Fig. 5 Z/Z ʘ = 0.2 Z/Z ʘ = 1.0

O/H dependence on N/O: There is evidence that O/H is nearly independent of N/O at high z, unlike the positive correlation assumed at low z. When assuming no N/O dependence in the photoionisation models, the sensitivity of the N2 diagnostic to Z g is weakened (Fig. 7). The stronger N/O-dependence of the N2 diagnostic causes the over-estimate of Z g at high z relative to the O3N2 diagnostic. Recalibrations of the low-z diagnostics specifically for high z give good correspondence with T e -based metallicities. 4 Fig. 6 Fig. 7

The MZR at z~2.3: 5 Assuming that the (locally calibrated) O3N2 diagnostic is better (as it has a weaker N/O dependence and closer correspondence to the few T e metallicities available), the MZR at z~2.3 is plotted (Fig. 8). An offset of around dex in Z g from the z=0 MZR is found, similar to the average offset found by Erb+06a using N2. However, no clear mass-dependence in the Zg offset is seen (see also Moustakas+11). This is in contradiction to the ‘chemical downsizing’ claimed by other works using other diagnostics, e.g. locally-calibrated N2 and R23 (e.g. Maiolino+08, Zahid+13b). Compared to Erb+06a metallicities: a) Lower Z g at high M * due to weaker N/O dependence. b) Higher Z g at low M * due to better correspondence with T e metallicities (i.e. higher SNR). Fig. 8

The MZR at z~2.3: The scatter in the z~2.3 MZR is remarkably small (σ sc ~0.10 dex), similar to that at z=0. Note that the diagnostic used (even when calibrated to be optimal at high-z) has a larger scatter (σ O3N2 ~0.14 dex). This suggests that there should be an even tighter correlation between M * and line intensity (therefore, Γ) than between M * and Z g … Also, there is no clear dependence of Z g on SFR at fixed mass in the MOSFIRE sample (Fig. 9). This suggests the FMR doesn’t hold at these high redshifts/SFRs… Zahid+14 Moustakas+11 6 Is chemical downsizing really occurring in galaxies?... Fig. 10 Fig. 11 Fu+12 Maiolino+08 See also Aumer+13 Fig. 12 Fig. 9

Conclusions: 7 Very young stellar populations, or very top-heavy IMF are not required to reproduce shifted BPT diagram at high redshift. Instead, binarity and fast rotation of low-metallicity, massive stars provide the conditions needed (i.e. high ionisation parameter and high T eff, and increased primary N production). Eight AGN hosts (determined by their far-UV, mid-IR, and X-ray properties) do not lie within the star-forming sequence of the BPT diagram at z~2.3. Therefore, this diagram can still be used to distinguish AGN optically. Strong-line diagnostics are likely tracing ionisation parameter more than Z g at high redshift. However, the O3N2 diagnostic (re-calibrated at z=0) appears to be the most accurate available currently, due to weaker N/O dependence and closer correspondence to T e -method metallicities. Metallicites from strong-line diagnostics differ from each other in different ways at low and high redshift. Therefore, conversions between diagnostics calibrated at z=0 won’t work at high redshift. No mass-dependent MZR evolution from z~2.3 to z=0 found. Previous high-z metallicity estimates using N2 and R23 are likely to be less accurate than the O3N2 diagnostic used here (which, in turn, is worse than an ‘ideal’ high-z-calibrated diagnostic, or T e metallicities). Uncomfortably small scatter in the MZR at all redshifts (compared to the error in the metallicity diagnostics used) suggests that a) a low range of T eff should be present at each epoch, and b) there should be a more fundamental, monotonic relation between M* and Γ. The fundamental metallicity relation (FMR) does not match the distribution of the z~2.3 sample in M * -SFR- Z g space. Nor does this projection onto this space reduce the scatter compared to the MZR (see also Cullen+14). T e -based metallicites, using either weak optical lines or rest-UV intercombination lines (e.g. Erb+10), and high- z calibrations of strong-line ratios from them, are the best ways forward for studying Z g at high redshift.