Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

Census Bureau DRIS Date: 01/16/ Index Data Modeling Data Modeling Current Datafile Current Datafile Current Dataload Current Dataload Data Overlook.
Chapter 13: Query Processing
Dynamic Programming 25-Mar-17.
1 Vorlesung Informatik 2 Algorithmen und Datenstrukturen (Parallel Algorithms) Robin Pomplun.
Chapter 1 The Study of Body Function Image PowerPoint
Cognitive Radio Communications and Networks: Principles and Practice By A. M. Wyglinski, M. Nekovee, Y. T. Hou (Elsevier, December 2009) 1 Chapter 12 Cross-Layer.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Answering Approximate Queries over Autonomous Web Databases Xiangfu Meng, Z. M. Ma, and Li Yan College of Information Science and Engineering, Northeastern.
Dynamic Programming Introduction Prof. Muhammad Saeed.
Business Transaction Management Software for Application Coordination 1 Business Processes and Coordination.
and 6.855J Cycle Canceling Algorithm. 2 A minimum cost flow problem , $4 20, $1 20, $2 25, $2 25, $5 20, $6 30, $
Tuesday, May 7 Integer Programming Formulations Handouts: Lecture Notes.
Tuesday, March 5 Duality – The art of obtaining bounds – weak and strong duality Handouts: Lecture Notes.
and 6.855J Spanning Tree Algorithms. 2 The Greedy Algorithm in Action
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
0 - 0.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
MULTIPLYING MONOMIALS TIMES POLYNOMIALS (DISTRIBUTIVE PROPERTY)
SUBTRACTING INTEGERS 1. CHANGE THE SUBTRACTION SIGN TO ADDITION
MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
Addition Facts
1 LP, extended maxflow, TRW OR: How to understand Vladimirs most recent work Ramin Zabih Cornell University.
ZMQS ZMQS
Reductions Complexity ©D.Moshkovitz.
Evaluating Window Joins over Unbounded Streams Author: Jaewoo Kang, Jeffrey F. Naughton, Stratis D. Viglas University of Wisconsin-Madison CS Dept. Presenter:
Vote Elicitation with Probabilistic Preference Models: Empirical Estimation and Cost Tradeoffs Tyler Lu and Craig Boutilier University of Toronto.
1 Outline relationship among topics secrets LP with upper bounds by Simplex method basic feasible solution (BFS) by Simplex method for bounded variables.
Comp 122, Spring 2004 Order Statistics. order - 2 Lin / Devi Comp 122 Order Statistic i th order statistic: i th smallest element of a set of n elements.
Learning to Question: Leveraging User Preferences for Shopping Advice
Chapter 4: Informed Heuristic Search
1 Column Generation. 2 Outline trim loss problem different formulations column generation the trim loss problem master problem and subproblem in column.
Chapter 18 Methodology – Monitoring and Tuning the Operational System Transparencies © Pearson Education Limited 1995, 2005.
Randomized Algorithms Randomized Algorithms CS648 1.
ABC Technology Project
Short seed extractors against quantum storage Amnon Ta-Shma Tel-Aviv University 1.
Ideal Parent Structure Learning School of Engineering & Computer Science The Hebrew University, Jerusalem, Israel Gal Elidan with Iftach Nachman and Nir.
VOORBLAD.
Name Convolutional codes Tomashevich Victor. Name- 2 - Introduction Convolutional codes map information to code bits sequentially by convolving a sequence.
Squares and Square Root WALK. Solve each problem REVIEW:
1..
RecMax – Can we combine the power of Social Networks and Recommender Systems? Amit Goyal and L. RecMax: Exploting Recommender Systems for Fun and Profit.
Optimization 1/33 Radford, A D and Gero J S (1988). Design by Optimization in Architecture, Building, and Construction, Van Nostrand Reinhold, New York.
© 2012 National Heart Foundation of Australia. Slide 2.
This, that, these, those Number your paper from 1-10.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Addition 1’s to 20.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
Test B, 100 Subtraction Facts
Week 1.
Vincent S. Tseng, Cheng-Wei Wu, Bai-En Shie, and Philip S. Yu SIG KDD 2010 UP-Growth: An Efficient Algorithm for High Utility Itemset Mining 2010/8/25.
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
A SMALL TRUTH TO MAKE LIFE 100%
PSSA Preparation.
Choosing an Order for Joins
Introduction Distance-based Adaptable Similarity Search
Amit Goyal Laks V. S. Lakshmanan RecMax: Exploiting Recommender Systems for Fun and Profit University of British Columbia
Exemplar Queries: Knowledge Exploration using Information Graphs Davide Mottin, University of Trento August 20, RMIT University, Melbourne Department.
Presented by: Sandeep Chittal Minimum-Effort Driven Dynamic Faceted Search in Structured Databases Authors: Senjuti Basu Roy, Haidong Wang, Gautam Das,
Efficient Processing of Top-k Spatial Preference Queries
Presentation transcript:

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin Alice Marascu, Senjuti Basu Roy, Gautam Das, Themis Palpanas, Yannis Velegrakis

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin CAR DB CAR DB query = Alarm, DSL, Manual {} No answer 2

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin 3 Ranking results based on user preferences IR [Baeza11] and database solutions [Chaudhuri04] Query relaxation Modify some of the query conditions [Mishra09] (-) Suggests all the modification together (-) Does not take user feedback into account

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin Suggests one relaxation at a time Takes user feedback into account Models user preferences Optimization centric relaxation suggestions User centric (effort, relevance) System-centric (profit) 4

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin Exponential number of relaxations Modeling user preferences System encoding of different objective functions 5

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin A probabilistic optimization framework Based on probability that user says yes to relaxation Q’ of query Q 6

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin Probability of accepting relaxation Q’ of Q belief of user that an answer will be found in the database: Prior likelihood the user will like the answers of relaxed query: Pref

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin Probability to reject a relaxation Cost for a relaxation

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin Maximize profit Pref: favors solutions with highest values of individual tuples a static function Maximize answer relevance Pref: favors solutions with most relevant tuples to original query Semi-dynamic function (computed only once with the user query Minimize user effort Pref: favors solutions with least number of user interactions fully dynamic function (changes at every relaxation) 9

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin Minimum Effort Objective 10

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin Query : (Alarm, DSL, Manual) Relaxation nodes Choice nodes

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin Exact algorithm (FastOpt): Upper and lower bound for each node Pruning can be enabled for this algorithm Approximate algorithm (CDR): Nodes cost approximated by probability distribution Relaxation nodes: min/max distribution of Cost Choice nodes: sum distribution of Cost Approximated by computing the convolution cost 12

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin Idea: prune non-optimal relaxations in advance Upper and lower bound of cost function Prune branches using upper/lower bounds reasoning 13

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin Prune!!! 14

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin Datasets: US Home dataset: 38k tuples, 18 attributes Car dataset: 100k tuples, 31 attributes Syntetic datasets: 20k to 500k tuples Baseline algorithms: Previous works: top-k, query-refinement, ranking Random relaxation Greedy: choose the first non empy otherwise random 15

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin 1.Interactive vs non-interactive Measure user satisfaction with our interactive approach vs relax at-once approaches 100 Amazon Turk users, 5 queries each 2.Objective functions effectiveness Compare proposed relaxations with objective function goals (max profit, min effort, max user relevance) Three tasks 100 users, 5 queries 16

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin Scalability results: FastOpt (Exact): timely exact answers for small queries CDR (Approximate) real time answers for queries size 10 results close to optimal User study results Interactive methods preferred over non-interactive Objective functions correctly achieve their optimization goals 17

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin CDR close to optimal Random and Greedy produce 1.5 more relaxations 18

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin Exponential behaviour Efficient for small queries 1.4 sec for query size 10!!! 19

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin 20 Users prefer interactive systems to relaxations all at once Better quality answers

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin Introduce novel principled, user-centric and interactive approach for the empty-answer problem Propose exact and approximate algorithms Demonstrate scalability of proposed techniques with database and query size Show effectiveness of the different objective functions Verify quality of the answers and superior usability of our interactive approach 21

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin Objective functions achieve their goals Dynamic and Semi-Dynamic very similar in performance 23

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin Idea: use cost distribution instead of actual cost. 1.b-size histogram in each node 2.Construct the tree first L levels 3.Expand the branch with the biggest probability of being the optimal 24

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin 1.compute the probability that the cost is smaller than the siblings 2.choose the son with the highest probability Pr(n1<n2) = 0.6n1n2 Pr(n2<n1) = 0.4 Expand this! 25

Davide Mottin, Senjuti Basu Roy, Alice Marascu, Yannis Velegrakis, Themis Palpanas, Gautam Das A Probabilistic Optimization Framework for the Empty-Answer Problem Davide Mottin [Mishra09] C. Mishra and N. Koudas, “Interactive query refinement,” in EDBT,2009. [Roy08] S. Basu Roy, H. Wang, G. Das, U. Nambiar, and M. Mohania, “Minimum-effort driven dynamic faceted search in structured databases,” in CIKM, [Chadhuri04] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum, “Probabilistic ranking of database query results,” in VLDB, [Baeza11] R. A. Baeza-Yates and B. A. Ribeiro-Neto, Modern Information Retrieval,