Ilias Savvidis Aristotle University of Thessaloniki Development of a Spherical Proportional Counter for low energy neutrino detection via Coherent Scattering.

Slides:



Advertisements
Similar presentations
Edelweiss-II : status and first results A new generation of background-free bolometers for WIMP search X-F. Navick - CEA Saclay, IRFU, France LTD13 – Stanford.
Advertisements

NEWS: measurements at sub keV energies with spherical detectors
Results of a R&D Micromegas Bulk Results of a R&D S. Aune a, M. Boyer a, A. Delbart a, R. De Oliveira b, A. Giganon a, Y. Giomataris a A CEA / DAPNIA,
T. Lux. 13/12/ Charged particles X-ray (UV) Photons Cathode Anode Amplification Provides: xy position Energy (z position) e- CsI coating.
Glass Resistive plate chambers for muon Detection
An APD Readout for EL Detectors Thorsten Lux IFAE, Barcelona, Spain.
Edoardo Cardelli – Dipartimento di Fisica – Università di Cagliari Università degli Studi di Cagliari Dipartimento di Fisica Detector Quality Control Edoardo.
Resistive bulks industrialization Status report 2 OCTOBER 2012 Fabien Jeanneau | PAGE 1 RD51 Collaboration meeting | Stony Brook University | October 2012.
Zhimin Wang Liu Ruoqing, Tang ChenYang, Charling Tao, Changgen Yang, Changjiang Dai, Tsinghua & IHEP , Shanghai.
G. Fanourakis – HEP2013 – Chios George K. Fanourakis Institute of Nuclear & Particle Physics (INPP) – NCSR ‘Demokritos’ Gaseous Detectors for Particle,
Beam tests of Fast Neutron Imaging in China L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang 2, X.
Maximilien Chefdeville NIKHEF, Amsterdam RD51, Amsterdam 17/04/2008
Beijing, August 18, 2004 P. Colas - Micromegas for HEP 1 Recent developments of Micromegas detectors for High Energy Physics Principle of operationPrinciple.
Near Detector Working Group for ISS Neutrino Factory Scoping Study Meeting 24 January 2006 Paul Soler University of Glasgow/RAL.
R. Lemrani CEA Saclay Search for Dark Matter with EDELWEISS Status and future NDM ’06 Paris, September 3-9, 2006.
New Readout Methods for LAr detectors P. Otyugova ETH Zurich, Telichenphysik CHIPP Workshop on Neutrino physics.
RPC (Resistive Plate Chamber)
P. Gorodetzky PCC-Collège de France XIII ISVHECRI Pylos September NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from.
1 Microstrip PSD detectors C. Fermon, V. Wintenberger, G. Francinet, F. Ott, Laboratoire Léon Brillouin CEA/CNRS Saclay.
Zerguerras T. – IPNO – RDD – 14/06/2013 RD51 Collaboration Meeting July, Zaragoza 5-6th /12 New results on gas gain fluctuations in a Micromegas.
I. Giomataris Large TPCs for low energy rare event detection NNN05 Next Generation of Nucleon Decay and Neutrino Detectors 7-9 April 2005 Aussois, Savoie,
Kolympari, Crete, June 16, Study of avalanche fluctuations and energy resolution with an InGrid-TimePix detector P. Colas Progress report, based.
Measurement of gas gain fluctuations M. Chefdeville, LAPP, Annecy TPC Jamboree, Orsay, 12/05/2009.
I. Giomataris NOSTOS Neutrino studies with a tritium source Neutrino Oscillations with triton neutrinos The concept of a spherical TPC Measurement of.
FIRST RESULTS OF THE NEMO 3 EXPERIMENT Laurent SIMARD LAL Orsay (France) HEP-EPS 2003 conference CENBG, IN2P3-CNRS et Université de Bordeaux, France CFR,
GainEnergy resolution DIRECTION DES SCIENCES DE LA MATIERE LABORATOIRE DE RECHERCHE SUR LES LOIS FONDAMENTALES DE L’UNIVERS CENTRE DE SACLAY Contact :
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
PiggyBack: sealed MicroMEGAS with external read-out electronics L. Boilevin-Kayl D. Attié, C. Blondel, L. Boilevin-Kayl, D. Desforges, E. Ferrer Ribas,
Surface events suppression in the germanium bolometers EDELWEISS experiment Xavier-François Navick (CEA Dapnia) TAUP Sendai September 07.
Neutron scattering systems for calibration of dark matter search and low-energy neutrino detectors A.Bondar, A.Buzulutskov, A.Burdakov, E.Grishnjaev, A.Dolgov,
Stanford, Mar 21, 2005P. Colas - Micromegas TPC1 Results from a Micromegas TPC Cosmic Ray Test Berkeley-Orsay-Saclay Progress Report Reminder: the Berkeley-Orsay-
M. Manolopoulou 1, M. Fragopoulou 1, S. Stoulos 1, E. Vagena 1, W. Westmeier 2, M. Zamani 1 1 School of Physics, Aristotle University of Thessaloniki,
Large TPC Workshop, Paris, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay.
I. Giomataris NOSTOS a new low energy neutrino experiment Detect low energy neutrinos from a tritium source using a spherical gaseous TPC Study neutrino.
The EDELWEISS-II experiment Silvia SCORZA Université Claude Bernard- Institut de Physique nucléaire de Lyon CEA-Saclay DAPNIA/DRECAM (FRANCE), CNRS/CRTBT.
Véronique SANGLARD Université de Lyon, UCBL1 CNRS/IN2P3/IPNLyon Status of EDELWEISS-II.
26 décembre 2015 Progress in gaseous detectors and impact to physics I. Giomataris, CEA-Irfu-France MPGD2009, June 2009, Kolympari, Crete, Greece.
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
1 The pixel readout of TPCs Max Chefdeville, NIKHEF, Amsterdam.
BACKGROUND REJECTION AND SENSITIVITY FOR NEW GENERATION Ge DETECTORS EXPERIMENTS. Héctor Gómez Maluenda University of Zaragoza (SPAIN)
1/27/2016Katsushi Arisaka 1 University of California, Los Angeles Department of Physics and Astronomy Katsushi Arisaka XAX 10.
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
PSD-V, London, September 1999 Two dimensional readout in a liquid xenon ionisation chamber V.Solovov, V.Chepel, A.Pereira, M.I.Lopes, R.Ferreira Marques,
EUDET Meeting, Munich – October 18, Ongoing activities at Saclay David Attié D. Burke; P. Colas; E. Delagnes; A. Giganon; Y. Giomataris;
1 Two-phase Ar avalanche detectors based on GEMs A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, Y. Tikhonov Budker Institute of Nuclear Physics,
IEEE/NSS Oct 22, Electron Counting and Energy Resolution Study from X-ray conversion in Argon Mixtures with an InGrid-TimePix detector. D. ATTIÉ.
I. Giomataris, CEA-Irfu-France
T. Zerguerras- RD51 WG Meeting- CERN - February Single-electron response and energy resolution of a Micromegas detector T. Zerguerras *, B.
1 A two-phase Ar avalanche detector with CsI photocathode: first results A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, R. Snopkov, Y. Tikhonov.
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
Endplate meeting – September 13, Gas issues for a Micromegas TPC for the Future Linear Collider David Attié D. Burke; P. Colas;
Particle identification by energy loss measurement in the NA61 (SHINE) experiment Magdalena Posiadala University of Warsaw.
The digital TPC: the ultimate resolution P. Colas GridPix: integrated Timepix chips with a Micromegas mesh.
Gas Detectors and Neutron Detection
Limits on Low-Mass WIMP Dark Matter with an Ultra-Low-Energy Germanium Detector at 220 eV Threshold Overview (Collaboration; Program; Laboratory) Physics.
Systematic studies for microbulk detectors E. Ferrer Ribas, A. Giganon, Y. Giomataris, FJ Iguaz, T. Papaevangelou (Saclay) A. Gris, R. de Oliveira (CERN)
Physics in Underground Laboratories G Gerbier IRFU-CEA & slides from Hue Qian (THU) Underground Labs uopdate Current programs Status of FCPPL 012 activities.
Andrey Sokolov Novosibirsk State University (NSU) Budker Institute of Nuclear Physics (Budker INP) Novosibirsk, Russia Two-phase Cryogenic Avalanche Detector.
Scintillating Bolometers – Rejection of background due to standard two-neutrino double beta decay D.M. Chernyak 1,2, F.A. Danevich 2, A. Giuliani 1, M.
Energy resolution results for Microbulk MICROMEGAS at high energy and pressure. Alfredo Tomás Alquézar Universidad de Zaragoza on behalf of the collaboration.
Slides for IG NewS : GG – analysis june juin 2016 Spherical detector: recent developments I. Giomataris, CEA-Irfu-France Spherical detector at.
TPC for ILC and application to Fast Neutron Imaging L. An 2, D. Attié 1, Y. Chen 2, P. Colas 1, M. Riallot 1, H. Shen 2, W. Wang 1,2, X. Wang 2, C. Zhang.
From Edelweiss I to Edelweiss II
MIMAC MIcro-tpc MAtrix of Chambers ( 3He + CF4) A Large TPC for non baryonic Dark Matter search Daniel Santos Laboratoire de Physique Subatomique et.
MIcro-tpc Matrix of Cells of He3
UK Dark Matter Collaboration
A. Badertscher, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P
The MICROMEGAS detector in CAST
BINP:Two-phase Cryogenic Avalanche Detector (CRAD) with EL gap and THGEM/GAPD-matrix multiplier: concept and experimental setup Concept: Detector of nuclear.
Presentation transcript:

Ilias Savvidis Aristotle University of Thessaloniki Development of a Spherical Proportional Counter for low energy neutrino detection via Coherent Scattering Ilias Savvidis Aristotle University of Thessaloniki Collaboration I Savvidis 1, I Giomataris 2, E Bougamont 2, I Irastorza 4, S Aune 2, M Chapelier 2, Ph Charvin 2, P Colas 2, J Derre 2, E Ferrer 2, G Gerbier 2, M Gros 2, P Mangier 2, XF Navick 2, P Salin 5, J D Vergados 6 and M Zampalo 3 1 : Aristotle University of Thessaloniki, Greece 2 : IRFU, Centre d'études de Saclay, Gif sur Yvette CEDEX, France 3. LSM, Laboratoire Souterrain de Modane, France 4: University of Saragoza, Spain 5 : LSBB, France 6: University of Ioannina, Greece

Outline The detector characteristics The neutrino sources and spectra Low energy calibration The sub keV x-ray detection The low energy Ar recoil detection Conclutions

The detector Volume = 1 m3, Cu 6 mm Gas leak < 5x10-9mbar/s. Gas mixture Argon + 2%CH4.Pressure up to 5 bar Internal electrode at high voltage. Read-out of the internal electrode 15 mm

Radial TPC with spherical proportional counter read-out Saclay-Thessaloniki-Saragoza 5.9 keV 55 Fe signal Very low electronic noise: low threshold Good fit to theoretical curve including avalanche induction and electronics E=A/R 2 20  s Simple and cheap single read-out Robustness Good energy resolution Low energy threshold Efficient fiducial cut 15 mm A Novel large-volume Spherical Detector with Proportional Amplification read-out, I. Giomataris et al., JINST 3:P09007,2008 C= R in = 7.5 mm <.1pF

The electric field problem Good energy resolution →perfect electric field (spherical capacitor electric field)

Electrostatic field (simulation results) LEFT: 15 mm sphere, 1mm Cu cable covered with 3mm PE RIGHT: 15 mm sphere, 1mm Cu cable covered with 3mm PE + graphite (ground). Distance sphere to graphite 4mm No field correction With field correction

The three sensors which has been used

Alpha particle spectroscopy and thermal neutrons Rn-222: 5.49 MeV alpha Po-218: 6.00 MeV alpha Po-214: 7.68 MeV alpha Resolution: σ=1.5% Gas: 98% Ar + 2% CH4,P=200 mbar Underground thermal neutron peak in LSM, after rise time cut. 3gr He-3 in the sphere R=417 evts/d, Φth.neutron = n/cm2/s n + He-3 → p + H keV 765 keV

neutrinos antineutrinos super nova explosion nuclear reactor core Spherical Proportional Counter Can we detect the neutrinos?

Neutrino detection via coherent elastic scattering

Neutrino Sources Neutrino energy-spectra emitted in Core-collapse Supernova Typical Reactor Antineutrino Spectrum Other neutrino sources: Geoneutrinos, Solar neutrinos

The maximum recoiling energy versus the neutrino energy (both in units of the recoiling mass). The nuclear recoil energy versus the neutrino energy. From top to bottom nuclear targets with A=4, 20, 40, 84, 131 for the elements He, Ne, Ar, Kr and Xe respectively. The energy of the recoil nucleus Xe He Ar

Nuclear reactor neutrinos: With present prototype at 10 m from the reactor, after 1 year run (2x10 7 s)  assuming full detector efficiency: -Xe (  ≈ 2.16x cm 2 )  x    neutrinos detected, T max =146 eV - Ar (  ≈ 1.7x cm 2 )  x    neutrinos detected, T max =480 eV - Ne (  ≈ 7.8x cm 2 )  x    neutrinos detected, T max =960 eV Supernova neutrinos: -For a detector of radius 4 m with a gas under 10 Atm and a typical supernova in our galaxy, i.e. 10 kpc away, one finds 1, 30, 150, 600 and 1900 events for He, Ne, Ar, Kr and Xe respectively (Y. Giomataris, J. D. Vergados, Phys.Lett.B634:23-29,2006) Response of the detector to the reactor and supernova neutrinos

The detector’s characteristics for neutrino detection Low electronic noise Low energy threshold ( ̴ 100eV) Low energy recoil nucleus detection Separation of the recoil signals from the cosmic rays

Low energy calibration the 8 keV Cu –x rays (Ne + 5% CH4, P=500 mbar) 8 keV Cu-X Cosmic rays UV Lamp Electronic noise UV LampCosmic rays 8 keV Cu-X after cosmic rays cut-off

Sub-keV x-ray detection Peaks observed from the 241 Am radioactive source through aluminium and polypropylene foil. On the left the Carbon (270 eV) peak is shown, followed by the Aluminium peak (1.45 keV), the escape peak (E.P.) of Iron in Argon (3.3 keV), the escape peak of Copper in Argon (5 keV), the Iron peak (6.4 keV), the Copper peak (8 keV) and the Neptunium peak (13.93 keV).

Low energy Ar recoils detection using Am-Be neutron source (Thessaloniki, Nuclear Physics Laboratory) Am-Be source

Shielding Pb= 9cm Fe= 5cm PE= 2cm

P=250 mbar, 5%CH4+4%N2 Left: No source Bottom: Am-Be Ar recoils

P=175 mbar, 5%CH4+4%N2 Left: No source Am-Be + Cs-137 (γ 661keV) Cs-137 (γ 661keV) Ar recoils γ 661keV

P=50 mbar, 5%CH4+4%N2 Left: No source Am-Be Ar recoils 8 keV Cu-X

Cs-137 (γ 661keV) Am-Be P=50 mbar, 5%CH4+4%N2 8 keV Cu-X

Am-Be : No source P=50 mbar, 5%CH4+4%N2

Conclusions We have developed a new detector with: large mass good energy resolution low sub-keV energy threshold radial geometry with spherical proportional amplification read-out robustness and low cost.

Next step A new detector with low radiation materials is under construction Quenching factor measurement for the low energy particles Development of a new 8mm sensor for higher gain and stable for long time counting. Sub-keV Ar recoil detection from neutron scattering Separation of the Ar recoil signals from the cosmic rays