WFM-6204: Hydrologic Statistics

Slides:



Advertisements
Similar presentations
Probability Distribution
Advertisements

WFM-6204: Hydrologic Statistics
WFM 6204: Hydrologic Statistics © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM-6204: Hydrologic Statistics Akm Saiful Islam Syllabus October, 2007 Institute.
WFM 6204: Hydrologic Statistics © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM-6204: Hydrologic Statistics Akm Saiful Islam Lecture-3: Probabilistic analysis:
NORMAL OR GAUSSIAN DISTRIBUTION Chapter 5. General Normal Distribution Two parameter distribution with a pdf given by:
Hydrologic Statistics Reading: Chapter 11, Sections 12-1 and 12-2 of Applied Hydrology 04/04/2006.
JMB Chapter 6 Part 1 v4 EGR 252 Spring 2012 Slide 1 Continuous Probability Distributions Many continuous probability distributions, including: Uniform.
WFM 6202: Remote Sensing and GIS in Water Management © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 6202: Remote Sensing and GIS in Water Management Akm.
WFM 6204: Hydrologic Statistics © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM-6204: Hydrologic Statistics Akm Saiful Islam Lecture-2: Probability and.
WFM 6202: Remote Sensing and GIS in Water Management © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 6202: Remote Sensing and GIS in Water Management Akm.
Hydrologic Statistics
Sampling Distributions (§ )
Modeling Process Quality
WFM 6202: Remote Sensing and GIS in Water Management
ELEC 303 – Random Signals Lecture 18 – Statistics, Confidence Intervals Dr. Farinaz Koushanfar ECE Dept., Rice University Nov 10, 2009.
WFM 6204: Hydrologic Statistics © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM-6204: Hydrologic Statistics Akm Saiful Islam Lecture-1: Characteristics.
Statistical Review for Chapters 3 and 4 ISE 327 Fall 2008 Slide 1 Continuous Probability Distributions Many continuous probability distributions, including:
Prof. Dr. Ahmed Farouk Abdul Moneim. 1) Uniform Didtribution 2) Poisson’s Distribution 3) Binomial Distribution 4) Geometric Distribution 5) Negative.
FREQUENCY ANALYSIS Basic Problem: To relate the magnitude of extreme events to their frequency of occurrence through the use of probability distributions.
WFM 5201: Data Management and Statistical Analysis © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 5201: Data Management and Statistical Analysis Akm Saiful.
WFM 6202: Remote Sensing and GIS in Water Management © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 6202: Remote Sensing and GIS in Water Management Akm.
WFM 5201: Data Management and Statistical Analysis © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 5201: Data Management and Statistical Analysis Akm Saiful.
Concept Course on Spatial Dr. A.K.M. Saiful Islam Hands on training on locating buildings vulnerable to flood damage Dr. A.K.M. Saiful Islam.
Descriptive statistics Experiment  Data  Sample Statistics Sample mean Sample variance Normalize sample variance by N-1 Standard deviation goes as square-root.
WFM 5201: Data Management and Statistical Analysis © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 5201: Data Management and Statistical Analysis Akm Saiful.
WFM 6311: Climate Risk Management © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 6311: Climate Change Risk Management Akm Saiful Islam Lecture-1: Module-1.
WFM 5201: Data Management and Statistical Analysis © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 5201: Data Management and Statistical Analysis Akm Saiful.
WFM 6311: Climate Risk Management © Dr. Akm Saiful Islam WFM 6311: Climate Change Risk Management Akm Saiful Islam Lecture-5b: Quality Controlling Observational.
1 Engineering Computation Part 6. 2 Probability density function.
Lecture ERS 482/682 (Fall 2002) Flood (and drought) prediction ERS 482/682 Small Watershed Hydrology.
WFM 5201: Data Management and Statistical Analysis © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 5201: Data Management and Statistical Analysis Akm Saiful.
WFM 5201: Data Management and Statistical Analysis
WFM 5201: Data Management and Statistical Analysis
WFM 5201: Data Management and Statistical Analysis © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 5201: Data Management and Statistical Analysis Akm Saiful.
WFM 6311: Climate Risk Management © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 6311: Climate Change Risk Management Akm Saiful Islam Syllabus December,
WFM 5201: Data Management and Statistical Analysis
Normal and Sampling Distributions A normal distribution is uniquely determined by its mean, , and variance,  2 The random variable Z = (X-  /  is.
Continuous Probability Distribution  A continuous random variables (RV) has infinitely many possible outcomes  Probability is conveyed for a range of.
4-1 Continuous Random Variables 4-2 Probability Distributions and Probability Density Functions Figure 4-1 Density function of a loading on a long,
Standard error of estimate & Confidence interval.
Flood Frequency Analysis
1 Ch5. Probability Densities Dr. Deshi Ye
WFM 5201: Data Management and Statistical Analysis © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 5201: Data Management and Statistical Analysis Akm Saiful.
Statistics for Engineer Week II and Week III: Random Variables and Probability Distribution.
MTH 161: Introduction To Statistics
Statistics & Flood Frequency Chapter 3 Dr. Philip B. Bedient Rice University 2006.
JMB Ch6 Lecture2 Review EGR 252 Spring 2011 Slide 1 Continuous Probability Distributions Many continuous probability distributions, including: Uniform.
Copyright © 2010 Pearson Addison-Wesley. All rights reserved. Chapter 6 Some Continuous Probability Distributions.
Pemodelan Kualitas Proses Kode Matakuliah: I0092 – Statistik Pengendalian Kualitas Pertemuan : 2.
4-1 Continuous Random Variables 4-2 Probability Distributions and Probability Density Functions Figure 4-1 Density function of a loading on a long,
Chapter 7 Sampling and Sampling Distributions ©. Simple Random Sample simple random sample Suppose that we want to select a sample of n objects from a.
WFM 5201: Data Management and Statistical Analysis © Dr. Akm Saiful IslamDr. Akm Saiful Islam WFM 5201: Data Management and Statistical Analysis Akm Saiful.
Barnett/Ziegler/Byleen Finite Mathematics 11e1 Chapter 11 Review Important Terms, Symbols, Concepts Sect Graphing Data Bar graphs, broken-line graphs,
Chapter 31Introduction to Statistical Quality Control, 7th Edition by Douglas C. Montgomery. Copyright (c) 2012 John Wiley & Sons, Inc.
ELEC 303 – Random Signals Lecture 14 – Sample statistics, Limit Theorems Dr. Farinaz Koushanfar ECE Dept., Rice University Oct 21, 2010.
Statistics and probability Dr. Khaled Ismael Almghari Phone No:
Sampling and Sampling Distributions
4-1 Continuous Random Variables 4-2 Probability Distributions and Probability Density Functions Figure 4-1 Density function of a loading on a long,
Chapter 14 Fitting Probability Distributions
Statistical Quality Control, 7th Edition by Douglas C. Montgomery.
Flood Frequency Analysis
Sample Mean Distributions
Chapter 7: Sampling Distributions
Statistics & Flood Frequency Chapter 3 – Part 1
STAT 5372: Experimental Statistics
Hydrologic Statistics
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Chapter 6 Some Continuous Probability Distributions.
Sampling Distributions (§ )
Presentation transcript:

WFM-6204: Hydrologic Statistics WFM 6204: Hydrologic Statistics © Dr. Akm Saiful Islam WFM-6204: Hydrologic Statistics Lecture-5: Probabilistic analysis: (Part-3) Akm Saiful Islam Institute of Water and Flood Management (IWFM) Bangladesh University of Engineering and Technology (BUET) December, 2006

Probability Distributions and Their Applications Continuous Distributions Normal distribution Exponential distribution Gamma distribution Lognormal distribution Extreme value distribution Extreme value type-I: Gumbel distribution Extreme value type-III (minimum): Weibull distribution Pearson Type III distribution

Table: Area under standardized normal distribution

Central Limit theorem If Sn is the sum of n independently and identically distributed random variables Xi each having a mean and variance then in the limit as n approaches infinitely, the distribution of Sn approaches a normal distribution with mean n and variance n

Constructing normal curves for data Frequently the histogram of a set observed data suggests that the data may be approximated by a normal distribution. One way to investigate the goodness of this approximation is by superimposing a normal curve on the frequency histogram and then visually compare the two distributions. Statistical procedures for testing the hypothesis that a set of data can be approximated by a normal (or any other) distribution.

Normal Approximations Bi-nomial Distribution If X is a binomial random variable with parameters n1 and p and Y is a binomial random variable with parameters n2 and p the Z=X+Y is a binomial random variable with parameters n=n1+n2. Central Limit theorem would indicate that the normal distribution approximates the binomial distribution if n is large. Thus as n gets large the distribution of Approaches a N(0,1). This is sometimes knows as the DeMoivre-Laplace limit theorem

Example-1: [Haan, 1979] X is a binomial random variable with n=25 and p=0.3. Compare the binomial and normal approximation to the binomial for evaluating the prob(5<X≤8).

Normal Approximations Poission Distribution The sum of two Poissions random variables with parameters 1 and 2 is also a Poissions random variable with parameter =1+2 .. Extending this to the sum of a large number of Poission random variables, the Central Limit Theorem indicates that for large , the Poission may be approximated by a normal distribution. In this case the distribution of approaches a N(0,1). Since the Poission is the limiting form of the binomial and the binomial can be approximated by the normal, it is no surprise that the Poission can also be approximated by the normal.

Assignment-2:[due next week] X is a Poission random variable with =np where n=25 and p=0.3. Compare the Poission and normal approximation to the Poission for evaluating the prob(5<X≤8).

Exponential Distribution The exponential density function is given by and the cumulative exponential by The mean and variance of the exponential distribution are The exponential distribution is positively skewed with the skewness coefficient of 2. Both the method of moments and the maximum likelihood estimation give the parameter . The exponential distribution is a special case of the gamma distribution.

Example-2: [Haan, 1979] Haan and Johnson (1967) studied the physical characteristics of depressions in north-central Iowa. The data tabulated below shows the number of depressions falling into various classes based on the surface area of the depression. Plot a relative frequency histogram of the data. Superimpose on the histogram the best fitting exponential distribution. Estimate the probability that a depression selected at random will have an area greater than 2.25 acres.

Area (acres) No. depressions 0-½ 106 4-4½ 4 ½-1 36 4½-5 5 1-1½ 18 5-5½ 2 1½-2 9 5½-6 6 2-2½ 12 6-6½ 3 2½-3 6½-7 1 3-3½ 7-7½ 3½-4

Gamma Distribution The gamma distribution failure probability density obeys the equation , (4.6.1) where parameter r need not be an integer. The two parameters are the shape parameter r and the scale parameter . The shape of the distribution depends significantly upon the value of r. It has also an impact on the hazard rate . In the special case that r is an integer, the Erlangian distribution is recovered; in the special case that = 0.5 and r = 0.5, where is the number of degrees of freedom, the gamma distribution becomes the chi-square distribution.

The cumulative failure probability F(t) is: (4.6.2) The mean and variance of the gamma distribution are: and The gamma distribution is especially appropriate for systems subjected to an environment of repetitive, random shocks generated according to the Poisson distribution; thus the failure probability depends upon how many shocks the device has suffered, i.e., its age. As another application, if the mean rate of wear of a device is a constant, but the rate of wear is subject to random variations, then the gamma function should be used.

For some devices, such as those for which corrosion of metals is important, it may be appropriate to modify the two-parameter gamma distribution by introducing a time delay before the onset of failures begins. Then equation (4.6.1) is modified to read as: (4.6.3) In such a case, the mean of the distribution becomes: (4.6.4)

Example-3:[MacCormick,1981] Suppose that a device subjected to repetitive random shocks satisfies a gamma distribution with parameters r = 3 and hr, and that no failures can occur until 200 hour have passed. Estimate (a) the probability of failure after the device has operated for t = 4500 hour and (b) its mean time to failure. (MacCormick, 1981, p. 37) Solution: In this problem, the time displacement is = 200 hour. Integrating equation (4.6.3) from 0 to t and using equation (4.6.2) gives the cumulative probability: Using equation (4.6.4) gives mean time to failure (MTTF) = 200 + 3/1 0-3 = 3200 hr.

Example-4: [Haan, 1979] The annual water yield for Cave Creek (near Fort Spring, Kentucky) is shown in the following table. Estimate the parameters of the gamma distribution for this data using both the method of moments and the method of maximum likelihood. Assuming the data follows a gamma distribution, estimate the probability of an annual water yield exceeding 20.0 inch.

Log-Normal Distribution The lognormal distribution (sometimes spelled out as the logarithmic normal distribution) of a random variable is one for which the logarithm of follows a normal or Gaussian distribution. Denote , then Y has a normal or Gaussian distribution given by:

Derived distribution: Since , , the distribution of can be found as: (4.13.2) Note that equation (4.13.1) gives the distribution of Y as a normal distribution with mean and variance . Equation (4.13.2) gives the distribution of X as the lognormal distribution with parameters and .

Estimation of parameters ( , ) of lognormal distribution: Note: , , Chow (1954) Method: (1) (2) (3) The mean and variance of the lognormal distribution are: The coefficient of variation of the Xs is: The coefficient of skew of the Xs is: Thus the lognormal distribution is skewed to the right; the skewness increasing with increasing values of . and

Example-5:[Haan, 1979, p. 78] Use the lognormal distribution and calculate the expected relative frequency for the third class interval on the data in table 5.1

Example-6: [Haan, 1979] Assume the data of table 5.1 follow the lognormal distribution. Calculate the magnitude of the 100-year peak flood.