A man-machine human interface for a special device of the pervasive computing world B. Apolloni, S. Bassis, A. Brega, S. Gaito, D. Malchiodi, A.M. Zanaboni DSI - University of Milano (I)
Outline A procedure detecting attention states in car driving Fed by biologic input supplied through non invasive sensors Explains its output through a possibly interpretable rule
The data One subject using a car driver simulator Subjected to alternate attention demanding manoeuvres (fast lane exchange, pedestrian avoidance) and relaxed driving 4 signals traced by a Biopac device (SKT, GSR, ECG, RSP) Collected by the School of Psychology, Queen’s University Belfast.
Preprocessing Extracted features 8 conventional (from medical knowledge) FFT processing for ECG Drift of the ECG signal from a neural prediction SKT not considered (constant)
Feature processing I 15 Boolean values are extracted from a time-window of width 3 t-1t+1t Result of a Boolean ICA through minimization of empirical entropy 253 connections (after pruning)
Feature processing II Boolean values interpreted as propositional variables Minimal DNF and DNF on variables interpreted as symbolic wavelets Begin DNF= ø ; for each positive example u ; DNF = DNF {m} ; return DNF; End
An obtained CNF (x1+x3+x6+x8+x10+x14)(x1+x2+x5+x6+x7+x9+x11+x12+x13)(x1+x2+x6+x7+x9+x10+x12+ x14)(x1+x2+x5+x7+x8+x12+x13+x15)(x1+x3+x5+x11+x13+x15)(x3+x8+x10+x11+x13+x14+ x15)(x1+x2+x4+x6+x7+x11+x12+x13+x14+x15)(x1+x2+x4+x8+x12+x13+x14+x15)(x1+x2+x 3+x7+x8+x10+x13+x14+x15)(x3+x4+x8+x10+x13+x14+x15)(x1+x3+x6+x7+x8+x13+x14)(x3 +x5+x7+x8+x13)(x2+x3+x6+x7+x10+x11+x12+x13+x14)(x1+x5+x6+x8+x9+x11+x12+x15)(x 1+x5+x6+x8+x9+x11+x14+x15)(x3+x5+x7+x9+x10+x11)(x1+x3+x4+x7+x13+x14+x15)(x1+x 2+x3+x8+x11+x13+x14+x15)(x2+x5+x6+x7+x9+x11+x12+x15)(x2+x3+x4+x6+x9+x10+x11+ x12+x14)(x2+x4+x5+x7+x8+x13+x15)(x3+x4+x6+x7+x10+x13)(x3+x4+x6+x8+x10+x14)(x1+ x4+x7+x8+x13+x15)(x1+x4+x5+x7+x8+x9+x15)(x4+x7+x8+x10+x15)(x4+x7+x8+x10+x14)(x 2+x4+x5+x6+x7+x9+x10+x12+x13+x15)(x1+x3+x5+x8+x13+x15)(x1+x3+x6+x9+x10+x11+x 14)(x1+x6+x9+x10+x11+x12+x14)(x1+x6+x8+x9+x11+x12+x14)(x1+x2+x4+x6+x7+x10+x11 +x12+x13+x14)(x2+x4+x5+x8+x9+x10+x12+x13+x15)(x2+x4+x5+x7+x9+x10+x11+x12)(x1+ x3+x6+x7+x8+x10+x13)(x3+x4+x5+x6+x8+x9+x10+x11)(x2+x5+x6+x8+x9+x10+x11+x12)(x 2+x5+x6+x7+x8+x9+x11+x12)(x1+x2+x4+x5+x6+x7+x9+x12+x13)(x3+x4+x5+x7+x10+x11)( x1+x2+x5+x8+x10+x12+x13+x15)(x1+x2+x6+x7+x9+x10+x11)(x1+x2+x5+x7+x8+x9+x14)(x 3+x4+x5+x8+x9+x10+x13+x15)(x3+x8+x9+x10+x11+x13)(x3+x9+x10+x11+x13+x14)(x1+x6 +x7+x8+x9+x10+x12)(x1+x2+x3+x6+x11+x13+x14+x15)(x2+x4+x5+x6+x9+x11+x12+x14+x 15)(x2+x6+x7+x10+x11+x12+x13+x15)(x2+x4+x6+x10+x11+x12+x14+x15)(x2+x5+x6+x9+x 10+x11+x12+x14+x15)(x3+x4+x6+x8+x11+x14+x15)
Post processing Simplification of the learnt rules through stochastic optimization of the cost L: rule length, :rule radius, :disregarded points
A simplified CNF (x6+x11+x1+x13)(x10+x12+x9+x6)(x1+x13+x11+x5)(x3+x8+x6)(x4+x1+x13)(x12+x6+x 7+x13)(x13+x8+x9+x4)(x1+x6+x8)(x12+x6+x7+x8)(x1+x8+x5+x7)(x4+x6+x7+x13)(x7+ x9+x10+x11+x3)(x1+x8+x13+x15)(x3+x8+x13+x15)(x4+x7+x8)(x1+x6+x9+x10+x11)(x2 +x6+x11+x12+x15)(x3+x5+x8+x13)(x4+x5+x7+x10+x11)(x3+x9+x10+x11+x13) From 403 to 81 literals
Performance I DNFCNF LengthFPFNLengthFPFN AVG STDV 50 cross-validation test FP: false positives; FN: false negatives
Performance II LengthTPFPFN DNF LengthTNFNFPCNF
Performance III