A man-machine human interface for a special device of the pervasive computing world B. Apolloni, S. Bassis, A. Brega, S. Gaito, D. Malchiodi, A.M. Zanaboni.

Slides:



Advertisements
Similar presentations
YOSI! BLUE (30 sec play) Ball moves to X1 from X2
Advertisements

BESTIALES IV COLLECTION Reference numberDescriptionAvailable units BS Large backpack Size: 31x40x15cm Available in three models Reference.
An Introduction to Calculus. Calculus Study of how things change Allows us to model real-life situations very accurately.
Table de multiplication, division, addition et soustraction.
Evaluation and Validation
EOG Vocabulary Week of March 28, 2011 Math Words: Fractions and Properties.
VEDIC MATHEMATICS.
Maximal Independent Subsets of Linear Spaces. Whats a linear space? Given a set of points V a set of lines where a line is a k-set of points each pair.
Latent Growth Curve Models
Cenni di Machine Learning: Decision Tree Learning Fabio Massimo Zanzotto.
Rule Learning – Overview Goal: learn transfer rules for a language pair where one language is resource-rich, the other is resource-poor Learning proceeds.
My Special Number My Special Number Afrin12/10/2007.
PROLOG MORE PROBLEMS.
Bank Accounts Management System - p. 448
Sculpture. Rolling Ts (2010), Hammered Copper, Patina 36X36X2 in.
Induction of Decision Trees (IDT)
The Dating Game With Our Host, Welcome to the Dating Game, the game where we find the greatest common factors between different numbers. Hopefully well.
CS 473Lecture X1 CS473-Algorithms I Lecture X Dynamic Tables.
Times tables By Chloe and Izzy.
Inverting a Singly Linked List Instructor : Prof. Jyh-Shing Roger Jang Designer : Shao-Huan Wang The ideas are reference to the textbook “Fundamentals.
Outcome: Determine the square root of perfect squares.
© T Madas Botany Bay Amersham Northgate Poole Milling Collier Bay 1 cm = 2 km.
NEURAL NETWORKS Biological analogy
23-8 3x6 Double it Take Away 6 Share By 9 Double it +10 Halve it Beginner Start Answer Intermediate 70 50% of this ÷7÷7 x8 Double it Start Answer.
Aluminium Collection Source & Trade Agency Info:
LA TABLA DEL 5 5X1= 5X2= 5X3= 5X4= 5X5= 5X6= 5X7= 5X8= 5X9= 5X10=
2 x0 0 12/13/2014 Know Your Facts!. 2 x1 2 12/13/2014 Know Your Facts!
2 x /18/2014 Know Your Facts!. 11 x /18/2014 Know Your Facts!
1 STANDARD 1.2 DIVIDING FRACTIONS PROBLEM 1 PROBLEM 3 PROBLEM 2 PROBLEM 4 A pizza riddle? What is the rule to divide fractions? END SHOW PRESENTATION CREATED.
BA 452 Lesson A.11 Other Advanced Applications 1 1ReadingsReadings Chapter 5 Advanced Linear Programming Applications.
2 x /10/2015 Know Your Facts!. 8 x /10/2015 Know Your Facts!
2.4 – Factoring Polynomials Tricky Trinomials The Tabletop Method.
Strategies – Multiplication and Division
Tutorial 1: Sensitivity analysis of an analytical function
SAT Encoding For Sudoku Puzzles
PERMUTATIONS AND COMBINATIONS
Ken McMillan Microsoft Research
1 Lecture 5 PRAM Algorithm: Parallel Prefix Parallel Computing Fall 2008.
5 x4. 10 x2 9 x3 10 x9 10 x4 10 x8 9 x2 9 x4.
1 The Restaurant Domain Will they wait, or not?. 2 Decision Trees Patrons? NoYesWaitEst? No Alternate?Hungry?Yes Reservation?Fri/Sat?Alternate?Yes NoYesBar?Yes.
Parallel algorithms for expression evaluation Part1. Simultaneous substitution method (SimSub) Part2. A parallel pebble game.
EMIS 8374 LP Review: The Ratio Test. 1 Main Steps of the Simplex Method 1.Put the problem in row-0 form. 2.Construct the simplex tableau. 3.Obtain an.
DIRECTIONAL ARC-CONSISTENCY ANIMATION Fernando Miranda 5986/M
Linear Programming – Simplex Method: Computational Problems Breaking Ties in Selection of Non-Basic Variable – if tie for non-basic variable with largest.
Production Mix Problem Graphical Solution med lrg Electronics Cabinetry Profit (10,20) (Optimal Product Mix!) Profit.
CS 478 – Tools for Machine Learning and Data Mining Clustering: Distance-based Approaches.
The Problem of K Maximum Sums and its VLSI Implementation Sung Eun Bae, Tadao Takaoka University of Canterbury Christchurch New Zealand.
Optimization of order-picking using a revised minimum spanning table method 盧坤勇 國立聯合大學電子工程系.
Multiplication Facts Practice
A Case Study  Some Advice on How to Go about Solving Problems in Prolog  A Program to Play Connect-4 Game.
Constraint Optimization We are interested in the general non-linear programming problem like the following Find x which optimizes f(x) subject to gi(x)
Developing Mathematical Thinking In Number : Focus on Multiplication.
1 High Performance Algorithms for Multiple Streaming Time Series Xiaojian Zhao Advisor: Dennis Shasha Department of Computer Science Courant Institute.
Variational Inference Amr Ahmed Nov. 6 th Outline Approximate Inference Variational inference formulation – Mean Field Examples – Structured VI.
Chapter 8: The Solver and Mathematical Programming Spreadsheet-Based Decision Support Systems Prof. Name Position (123) University.
Probabilistic sequence modeling II: Markov chains Haixu Tang School of Informatics.
Computational Facility Layout
Shannon Expansion Given Boolean expression F = w 2 ’ + w 1 ’w 3 ’ + w 1 w 3 Shannon Expansion of F on a variable, say w 2, is to write F as two parts:
COMP9314Xuemin Continuously Maintaining Order Statistics Over Data Streams Lecture Notes COM9314.
Graeme Henchel Multiples Graeme Henchel
Low Power and Low Area Transform–Quant & Inverse Quant–Inverse Transform Hardware Design for H.264 Encoder.
1.Print and cut round outside of cootie catcher 2.Fold in half and in half again 3.Open out, turn over so.
The Project Problem formulation (one page) Literature review –“Related work" section of final paper, –Go to writing center, –Present paper(s) to class.
Susan Van Geest Artwork. Altar I: Centrality of Being Marble 1.5’x1.5’x1.5’
0 x x2 0 0 x1 0 0 x3 0 1 x7 7 2 x0 0 9 x0 0.
C2 Part 4: VLSI CAD Tools Problems and Algorithms Marcelo Johann EAMTA 2006.
Adding & Subtracting Mixed Numbers. Objective: To develop fluency in +, –, x, and ÷ of non-negative rational numbers. Essential Question: How.
SAT Solver CS 680 Formal Methods Jeremy Johnson. 2 Disjunctive Normal Form  A Boolean expression is a Boolean function  Any Boolean function can be.
22 22 33 33 11 11 X1 X2 X3 X4 X5 X6 X7 X8 X9                    2,1  3,1  3,2 2,1 1,1 3,1 4,2 5,2 6,2 7,3 8,3 9,3.
7x7=.
Presentation transcript:

A man-machine human interface for a special device of the pervasive computing world B. Apolloni, S. Bassis, A. Brega, S. Gaito, D. Malchiodi, A.M. Zanaboni DSI - University of Milano (I)

Outline  A procedure detecting attention states in car driving  Fed by biologic input supplied through non invasive sensors  Explains its output through a possibly interpretable rule

The data  One subject using a car driver simulator  Subjected to alternate attention demanding manoeuvres (fast lane exchange, pedestrian avoidance) and relaxed driving  4 signals traced by a Biopac device (SKT, GSR, ECG, RSP)  Collected by the School of Psychology, Queen’s University Belfast.

Preprocessing  Extracted features  8 conventional (from medical knowledge)  FFT processing for ECG  Drift of the ECG signal from a neural prediction  SKT not considered (constant)

Feature processing I  15 Boolean values are extracted from a time-window of width 3 t-1t+1t  Result of a Boolean ICA through minimization of empirical entropy  253 connections (after pruning)

Feature processing II  Boolean values interpreted as propositional variables  Minimal DNF and DNF on variables interpreted as symbolic wavelets Begin DNF= ø ; for each positive example u ; DNF = DNF  {m} ; return DNF; End

An obtained CNF (x1+x3+x6+x8+x10+x14)(x1+x2+x5+x6+x7+x9+x11+x12+x13)(x1+x2+x6+x7+x9+x10+x12+ x14)(x1+x2+x5+x7+x8+x12+x13+x15)(x1+x3+x5+x11+x13+x15)(x3+x8+x10+x11+x13+x14+ x15)(x1+x2+x4+x6+x7+x11+x12+x13+x14+x15)(x1+x2+x4+x8+x12+x13+x14+x15)(x1+x2+x 3+x7+x8+x10+x13+x14+x15)(x3+x4+x8+x10+x13+x14+x15)(x1+x3+x6+x7+x8+x13+x14)(x3 +x5+x7+x8+x13)(x2+x3+x6+x7+x10+x11+x12+x13+x14)(x1+x5+x6+x8+x9+x11+x12+x15)(x 1+x5+x6+x8+x9+x11+x14+x15)(x3+x5+x7+x9+x10+x11)(x1+x3+x4+x7+x13+x14+x15)(x1+x 2+x3+x8+x11+x13+x14+x15)(x2+x5+x6+x7+x9+x11+x12+x15)(x2+x3+x4+x6+x9+x10+x11+ x12+x14)(x2+x4+x5+x7+x8+x13+x15)(x3+x4+x6+x7+x10+x13)(x3+x4+x6+x8+x10+x14)(x1+ x4+x7+x8+x13+x15)(x1+x4+x5+x7+x8+x9+x15)(x4+x7+x8+x10+x15)(x4+x7+x8+x10+x14)(x 2+x4+x5+x6+x7+x9+x10+x12+x13+x15)(x1+x3+x5+x8+x13+x15)(x1+x3+x6+x9+x10+x11+x 14)(x1+x6+x9+x10+x11+x12+x14)(x1+x6+x8+x9+x11+x12+x14)(x1+x2+x4+x6+x7+x10+x11 +x12+x13+x14)(x2+x4+x5+x8+x9+x10+x12+x13+x15)(x2+x4+x5+x7+x9+x10+x11+x12)(x1+ x3+x6+x7+x8+x10+x13)(x3+x4+x5+x6+x8+x9+x10+x11)(x2+x5+x6+x8+x9+x10+x11+x12)(x 2+x5+x6+x7+x8+x9+x11+x12)(x1+x2+x4+x5+x6+x7+x9+x12+x13)(x3+x4+x5+x7+x10+x11)( x1+x2+x5+x8+x10+x12+x13+x15)(x1+x2+x6+x7+x9+x10+x11)(x1+x2+x5+x7+x8+x9+x14)(x 3+x4+x5+x8+x9+x10+x13+x15)(x3+x8+x9+x10+x11+x13)(x3+x9+x10+x11+x13+x14)(x1+x6 +x7+x8+x9+x10+x12)(x1+x2+x3+x6+x11+x13+x14+x15)(x2+x4+x5+x6+x9+x11+x12+x14+x 15)(x2+x6+x7+x10+x11+x12+x13+x15)(x2+x4+x6+x10+x11+x12+x14+x15)(x2+x5+x6+x9+x 10+x11+x12+x14+x15)(x3+x4+x6+x8+x11+x14+x15)

Post processing  Simplification of the learnt rules through stochastic optimization of the cost  L: rule length,  :rule radius, :disregarded points

A simplified CNF (x6+x11+x1+x13)(x10+x12+x9+x6)(x1+x13+x11+x5)(x3+x8+x6)(x4+x1+x13)(x12+x6+x 7+x13)(x13+x8+x9+x4)(x1+x6+x8)(x12+x6+x7+x8)(x1+x8+x5+x7)(x4+x6+x7+x13)(x7+ x9+x10+x11+x3)(x1+x8+x13+x15)(x3+x8+x13+x15)(x4+x7+x8)(x1+x6+x9+x10+x11)(x2 +x6+x11+x12+x15)(x3+x5+x8+x13)(x4+x5+x7+x10+x11)(x3+x9+x10+x11+x13)  From 403 to 81 literals

Performance I DNFCNF LengthFPFNLengthFPFN AVG STDV  50 cross-validation test  FP: false positives; FN: false negatives

Performance II LengthTPFPFN DNF LengthTNFNFPCNF

Performance III