Foldr and Foldl CS 5010 Program Design Paradigms “Bootcamp” Lesson 7.5 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:

Slides:



Advertisements
Similar presentations
You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Advertisements

Finding The Unknown Number In A Number Sentence! NCSCOS 3 rd grade 5.04 By: Stephanie Irizarry Click arrow to go to next question.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
My Alphabet Book abcdefghijklm nopqrstuvwxyz.
Addition Facts
Discrete Math Recurrence Relations 1.
ABC Technology Project
© 2012 National Heart Foundation of Australia. Slide 2.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Addition 1’s to 20.
25 seconds left…...
When do I need an invariant? CS 5010 Program Design Paradigms “Bootcamp” Lesson 7.4 TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Week 1.
We will resume in: 25 Minutes.
Depth-First and Breadth-First Search CS 5010 Program Design Paradigms “Bootcamp” Lesson 9.2 TexPoint fonts used in EMF. Read the TexPoint manual before.
Binary Search CS 5010 Program Design Paradigms “Bootcamp” Lesson 8.3 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:
Contracts, Purpose Statements, Examples and Tests CS 5010 Program Design Paradigms “Bootcamp” Lesson 1.6 TexPoint fonts used in EMF. Read the TexPoint.
Sometimes Structural Recursion Isn't Enough CS 5010 Program Design Paradigms “Bootcamp” Lesson 8.1 TexPoint fonts used in EMF. Read the TexPoint manual.
Two Draggable Cats CS 5010 Program Design Paradigms “Bootcamp” Lesson 3.4 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:
Reviewing your Program CS 5010 Program Design Paradigms “Bootcamp” Lesson 2.4 © Mitchell Wand, This work is licensed under a Creative Commons.
Lists vs. Structures CS 5010 Program Design Paradigms “Bootcamp” Lesson 6.1 © Mitchell Wand, This work is licensed under a Creative Commons Attribution-NonCommercial.
The 8-queens problem CS 5010 Program Design Paradigms “Bootcamp” Lesson 9.3 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this.
Midterm Review CS 5010 Program Design Paradigms “Bootcamp” Lesson 9.4 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:
Linear Search CS 5010 Program Design Paradigms “Bootcamp” Lesson 9.1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:
Lists CS 5010 Program Design Paradigms “Bootcamp” Lesson 4.1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA 1 ©
Case Study: Free Variables CS 5010 Program Design Paradigms “Bootcamp” Lesson 7.3 TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Ormap, andmap, and filter CS 5010 Program Design Paradigms “Bootcamp” Lesson 5.3 TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Rewriting your function using map and foldr CS 5010 Program Design Paradigms “Bootcamp” Lesson 5.5 TexPoint fonts used in EMF. Read the TexPoint manual.
Introducing General Recursion CS 5010 Program Design Paradigms “Bootcamp” Lesson 8.2 TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Mutually-Recursive Data Definitions CS 5010 Program Design Paradigms “Bootcamp” Lesson 6.4 © Mitchell Wand, This work is licensed under a Creative.
Foldr CS 5010 Program Design Paradigms “Bootcamp” Lesson 5.4 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA © Mitchell.
Solving Your Problem by Generalization CS 5010 Program Design Paradigms “Bootcamp” Lesson 7.1 © Mitchell Wand, This work is licensed under a.
Invariants and Performance CS 5010 Program Design Paradigms “Bootcamp” Lesson 7.6 TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Rewriting your function using map and foldr CS 5010 Program Design Paradigms “Bootcamp” Lesson TexPoint fonts used in EMF. Read the TexPoint manual.
Invariants and Performance CS 5010 Program Design Paradigms “Bootcamp” Lesson TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
More examples of invariants CS 5010 Program Design Paradigms “Bootcamp” Lesson © Mitchell Wand, This work is licensed under a Creative.
Generalizing Over Functions CS 5010 Program Design Paradigms “Bootcamp” Lesson TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Lists of Structures CS 5010 Program Design Paradigms “Bootcamp” Lesson TexPoint fonts used in EMF. Read the TexPoint manual before you delete this.
Solving Your Problem by Generalization CS 5010 Program Design Paradigms “Bootcamp” Lesson 7.1 © Mitchell Wand, This work is licensed under a.
Linear Search CS 5010 Program Design Paradigms “Bootcamp” Lesson TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:
Halting Measures and Termination Arguments CS 5010 Program Design Paradigms “Bootcamp” Lesson TexPoint fonts used in EMF. Read the TexPoint manual.
Non-Empty Lists CS 5010 Program Design Paradigms “Bootcamp” Lesson TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:
Using the List Template CS 5010 Program Design Paradigms “Bootcamp” Lesson TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Using the List Template CS 5010 Program Design Paradigms “Bootcamp” Lesson 4.2 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this.
Sometimes Structural Recursion Isn't Enough CS 5010 Program Design Paradigms “Bootcamp” Lesson 8.1 TexPoint fonts used in EMF. Read the TexPoint manual.
More linear search with invariants CS 5010 Program Design Paradigms “Bootcamp” Lesson TexPoint fonts used in EMF. Read the TexPoint manual before.
Solving Your Problem by Generalization CS 5010 Program Design Paradigms “Bootcamp” Lesson © Mitchell Wand, This work is licensed under.
Generalizing Similar Functions
CS 5010 Program Design Paradigms “Bootcamp” Lesson 5.2
More About Recursive Data Types
CS 5010 Program Design Paradigms “Bootcamp” Lesson 4.3
More Recursive Data Types
CS 5010 Program Design Paradigms “Bootcamp” Lesson 8.7
Halting Functions for Tree-Like Structures
CS 5010 Program Design Paradigms “Bootcamp” Lesson 4.1
From Templates to Folds
CS 5010 Program Design Paradigms “Bootcamp” Lesson 3.4
Case Study: Undefined Variables
CS 5010 Program Design Paradigms “Bootcamp” Lesson 7.5
Solving Your Problem by Generalization
CS 5010 Program Design Paradigms “Bootcamp” Lesson 6.5
More examples of invariants
ormap, andmap, and filter
Generalizing Similar Functions
Rewriting your function using map and foldr
CS 5010 Program Design Paradigms “Bootcamp” Lesson 4.1
When do I need an invariant?
CS 5010 Program Design Paradigms “Bootcamp” Lesson 8.3
Presentation transcript:

Foldr and Foldl CS 5010 Program Design Paradigms “Bootcamp” Lesson 7.5 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA © Mitchell Wand, This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Creative Commons Attribution-NonCommercial 4.0 International License 1

Lesson Outline Look more closely at foldr Introduce foldl: like foldr but "in the other direction" Implement using accumulators Look at an application 2

Learning Objectives At the end of this lesson you should be able to: – explain what foldr and foldl compute – explain the difference between foldr and foldl – explain why they are called "fold right" and "fold left" – use foldl in a function definition 3

Foldr: the general picture () x1 f x3 f f x2 f x4 f f x5 f f a (foldr f a (list x1... x5)) 4

Another picture of foldr The textbook says: ;; foldr : (X Y -> Y) Y ListOf -> Y ;; (foldr f base (list x_1... x_n)) ;; = (f x_1... (f x_n base)) This may be clearer if we write the combiner in infix: eg (x - y) instead of (f x y) : (foldr – a (list x1... xn)) = x1 – (x2 – (... – (xn – a))) We use – instead of +, because – is not associative. So it makes a difference which way you associate x1 – x2 – x3 – x4 5

What if we wanted to associate the other way? Instead of x1 – (x2 – (... – (xn – a))) suppose we wanted (((a – x1) – x2)... – xn) foldr associates its operator to the right foldl will associate its operator to the left 6

For this computation, the pipeline goes the other way (foldl f a (list x1... x5)) 7

Let's write the code ;; We'll use the template: (define (foldl f a lst) (cond [(empty? lst)...] [else (... (first lst) (foldl... (rest lst)))]) We'll need to figure out what goes here. 8

What if lst is empty? When the list is empty, there are no stages in the pipeline, so (foldl f a empty) = a 9

What if the list is non-empty? = = 10

So for a non-empty list (foldl f a (cons x1 lst)) = (foldl f (f x1 a) lst) 11

Putting this together (define (foldl f a lst) (cond [(empty? lst) a] [else (foldl f (f (first lst) a) (rest lst))])) 12

Let's do a computation (foldl - 1 (list )) = (foldl - 19 (list 10 2)) ;20-1 = 19 = (foldl - -9 (list 2)) ;10-19 = -9 = (foldl - 11 empty) ;2-(-9) = 11 = 11 13

What's the contract? This part is like foldr: We can label all the vertical arrows as X's and all the horizontal arrows as Y's, so the contract becomes (X Y -> Y) Y ListOf -> Y 14

Purpose Statement (1) Textbook description: ;; foldl : (X Y -> Y) Y ListOf -> Y ;; (foldl f base (list x_1... x_n)) ;; = (f x_n... (f x_1 base)) 15

Can we describe this using an invariant? To do this, let's think about where we are in the middle of a computation At this point, we've processed x1 and x2, and we are looking at the sublist (x3... xn) (((a – x1) – x2) x3... – xn) 16

Purpose Statement using invariant GIVEN: a function f, a value a, and a sublist lst WHERE: lst is a sublist of some larger list lst0 AND: a is the result of applying f to some starting element a0 and the elements of lst0 that are above lst RETURNS: the result of applying f to the starting element a0 and all the elements of lst0. Here's an alternate purpose statement that describes the situation in the middle of the pipeline. You don't have to use this purpose statement; you can use the one from the book if it is easier for you. 17

Let's apply this to subtraction ;; diff : NonEmptyListOfNumber -> Number ;; GIVEN: a nonempty list of numbers ;; RETURNS: the result of subtracting the numbers, from ;; left to right. ;; EXAMPLE: ;; (diff (list )) = 2 ;; We'll use the data definition ;; NELON = (cons Number ListOfNumber) This was guided practice

Code, with simple purpose statement (define (diff nelst) (diff-inner (first nelst) (rest nelst))) ;; diff-inner : Number ListOf ;; RETURNS: the result of subtracting each of the numbers in lon ;; from num (define (diff-inner num lon) (cond [(empty? lon) num] [else (diff-inner (- num (first lon)) ;; this is (f a (first lon)) ;; different order of arguments ;; than foldl (rest lon))])) 19

Code, with fancier purpose statement (define (diff nelst) (diff-inner (first nelst) (rest nelst))) ;; diff-inner : Number ListOf ;; GIVEN: a number sofar and a sublist lon of some list lon0 ;; WHERE: sofar is the result of subtracting all the numbers in ;; lon0 that are above lon. ;; RETURNS: the result of subtracting all the numbers in lon0. (define (diff-inner sofar lon) (cond [(empty? lon) sofar] [else (diff-inner (- sofar (first lon)) ;; this is (f a (first lon)) ;; different order of arguments ;; than foldl (rest lon))])) You could use either purpose statement. sofar is a good name for this argument 20

Or using foldl (define (diff nelst) (foldl (lambda (x sofar) (- sofar x)) ;; foldl wants an X Y -> Y (first nelst) (rest nelst))) sofar is a good name for this argument, because it describes where the value comes from. 21

Another application: Simulation ;; simulating a process ;; Wishlist: ;; next-state : Move State -> State ;; simulate : State ListOfMove -> State ;; given a starting state and a list of ;; moves, find the final state 22

An Application: Simulation ;; strategy: structural decomposition on moves (define (simulate st moves) (cond [(empty? moves) st] [else (simulate (next-state (first moves) st) (rest moves)))])) 23

Or using foldl (define (simulate initial-state moves) (foldl next-state initial-state moves)) I carefully chose the order of the arguments to make this work. If next-state took its arguments in a different order, you'd have to do the same kind of thing we did for subtraction above. 24

Summary You should now be able to: – explain what foldr and foldl compute – explain the difference between foldr and foldl – explain why they are called "fold right" and "fold left" – use foldl in a function definition 25

Next Steps If you have questions about this lesson, ask them on the Discussion Board Go on to the next lesson 26