Management Scenarios for Fished Resources of the New Caledonian Lagoon Using a Spatially-Explicit Model Dire ici que cela fait partie d’une thèse mené.

Slides:



Advertisements
Similar presentations
© Jim Barritt 2005School of Biological Sciences, Victoria University, Wellington MSc Student Supervisors : Dr Stephen Hartley, Dr Marcus Frean Victoria.
Advertisements

© Jim Barritt 2005School of Biological Sciences, Victoria University, Wellington MSc Student Supervisors : Dr Stephen Hartley, Dr Marcus Frean Victoria.
Using Fisheries-Focused Ecosystem Models to Assess the Benefits of Chesapeake Bay TMDLs Howard Townsend, Ph.D. Modeling and Analysis Team Lead NOAA Chesapeake.
Socio Economic study of meningitis epidemic Anaïs Colombini, AMP GEO meningitis meeting September, 2007.
Basic Bioeconomics Model of Fishing
Integrated Maritime Policy
1Regional policy responses to demographic challenges, Bruxelles, January 2007 EUROSTAT regional population projections Giampaolo LANZIERI Eurostat.
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Year 6 mental test 5 second questions
A Preliminary assessment and management of European hake Murleccius murleccius in the Egyptian coast of Mediterranean.
Chapter 7 Sampling and Sampling Distributions
Chapter 1 Why Study Statistics?
DOROTHY Design Of customeR dRiven shOes and multi-siTe factorY Product and Production Configuration Method (PPCM) ICE 2009 IMS Workshops Dorothy Parallel.
1 A spatialized approach of socio-economic indicators on a local scale. Experimentation on the ICZM case study Bouches du Rhône Jean-François Cadiou, Régis.
Indicators for ecosystem based management: Methods and applications Verena Trenkel, Anik BrindAmour, Pascal Lorance, Stéphanie Mahevas, Marie-Joëlle Rochet.
Modeling Recruitment in Stock Synthesis
R E 1 Monitoring environmental health around Schiphol airport Carla van Wiechen, Danny Houthuijs, Siem Heisterkamp, Erik Lebret.
Monitoring of Great Basin Redband Trout 6 Year Pilot Study ODFW Native Fish Investigations Project.
Opioid-Related Deaths and Mortality Rates by County, Wisconsin Residents Office of Health Informatics and AIDS/HIV and Hepatitis C Program Bureau.
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
Evaluation of standard ICES stock assessment and Bayesian stock assessment in the light of uncertainty: North Sea herring as an example Samu MäntyniemiFEM,
A 1 Defining urban areas, some case studies in Finland Nordic Forum for Geostatistics Sinikka Laurila Statistics Finland
ICES Advice for 2009 South Western Waters SWWRAC, Lisbon, 08July08 Manuela Azevedo (on behalf of ACOM Chair)
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
ET2050 Meta Analysis of Model Results Michael Wegener ET2050 TPG Meeting, Brussels, February 2014.
Marine Resource Advisory Council January 15, 2013 An update on the 2013 Summer Flounder, Scup, and Black Sea Bass recreational fishing regulations.
PSSA Preparation.
Essential Cell Biology
Organization Theory and Health Services Management
Anaïs GUIGNARD LURPA, ENS Cachan Validation of logic controllers from event observation in a closed-loop system Réunion VACSIM - 14 Octobre 2014.
Port-en-Bessin, France
Are the apparent rapid declines in top pelagic predators real? Mark Maunder, Shelton Harley, Mike Hinton, and others IATTC.
The C budget of Japan: Ecosystem Model (TsuBiMo) Y. YAMAGATA and G. ALEXANDROV Climate Change Research Project, National Institute for Environmental Studies,
Stock assessment of red mullet and hake in the Egyptian Mediterranean Waters Sahar Mehanna Fish Population Dynamics Lab NIOF, Egypt.
UNIT 5: Fish biology.
Black Sea Bass – Northern Stock Coastal-Pelagic/ASMFC Working Group Review June 15, 2010.
The current status of fisheries stock assessment Mark Maunder Inter-American Tropical Tuna Commission (IATTC) Center for the Advancement of Population.
Population Dynamics in a Stirred, not Mixed, Ocean Bruce Kendall, David Siegel, Christopher Costello, Stephen Gaines, Ray Hilborn, Robert Warner, Kraig.
Flow, Fish & Fishing A Biocomplexity Project
By Rob Day, David Bardos, Fabrice Vinatier and Julien Sagiotto
Scaling of Larval Transport in the Coastal Ocean Satoshi Mitarai, Dave Siegel, Kraig Winters Postdoctoral Researcher University of California, Santa Barbara.
Flow, Fish and Fishing: Building Spatial Fishing Scenarios Dave Siegel, James Watson, Chris Costello, Crow White, Satoshi Mitarai, Dan Kaffine, Will White,
Modeling MPAs in regulated fisheries: assessing the role of larval dispersal distance Carey McGilliard and Ray Hilborn July 12, 2006.
Case Study - Dover Sole Range from Baja California to the Bering Sea. On mud or muddy-sand, at 35 to 1400 m depths. Feed on polychaete worms, shrimp, brittle.
Fishing in a stirred ocean: sustainable harvest can increase spatial variation in fish populations Heather Berkley Bruce Kendall, David Siegel, Christopher.
Fishing in a stirred ocean: sustainable harvest can increase spatial variation in fish populations Heather Berkley Bruce Kendall David Siegel.
Hierarchical Bayesian Analysis of the Spiny Lobster Fishery in California Brian Kinlan, Steve Gaines, Deborah McArdle, Katherine Emery UCSB.
Kelp-Sea Urchin-Fishermen: a Spatially Explicit Individual-Based Model Nicolas Gutierrez and Ray Hilborn School of Aquatic and Fishery Sciences University.
Maximum likelihood estimates of North Pacific albacore tuna ( Thunnus alalunga ) von Bertalanffy growth parameters using conditional-age-at-length data.
Empirical and other stock assessment approaches FMSP Stock Assessment Tools Training Workshop Bangladesh 19 th - 25 th September 2005.
UNIT 8: Fisheries assessments. 2 Fisheries data Why do we need fisheries data? FAO (2005): “Information is critical to EAF. It underpins the formulation.
Bridging from single species tactical advice to ecosystem-based strategic advice Lesson 1: We should expect our models to fail, sometimes spectacularly.
WP5 Status Report Will Le Quesne Nick Polunin School of Marine Science and Technology, Newcastle University, UK.
Data assimilation in APECOSM-E Sibylle Dueri, Olivier Maury
Fisheries 101: Modeling and assessments to achieve sustainability Training Module July 2013.
Steve Gaines Bren School of Environmental Science & Management Sustainable Fisheries Group UC Santa Barbara12 May 2011.
Proxies for estimation of relative fishing mortality when biomass is unknown Rainer Froese, GEOMAR Arlene Sampang, FIN ICES ASC, Bergen, 18 September 2012.
CAN DIAGNOSTIC TESTS HELP IDENTIFY WHAT MODEL STRUCTURE IS MISSPECIFIED? Felipe Carvalho 1, Mark N. Maunder 2,3, Yi-Jay Chang 1, Kevin R. Piner 4, Andre.
Yellowfin Tuna Major Changes Catch, effort, and length-frequency data for the surface fisheries have been updated to include new data for 2005.
Population Dynamics and Stock Assessment of Red King Crab in Bristol Bay, Alaska Jie Zheng Alaska Department of Fish and Game Juneau, Alaska, USA.
MSE on the East Coast Mike Wilberg Chesapeake Biological Laboratory University of Maryland Center for Environmental Science May 8, 2015.
Adaptive Management. 2 Growth Recruitment Stock or Biomass Natural Harvest Risk Assessment Economics Sociocultural Political/Legal Management Objectives.
Retrospective bioeconomic analysis of Fraser River sockeye salmon fisheries management Dale Marsden, Steve Martell and Rashid Sumaila Fisheries Economics.
ELFSim: a fisheries decision support tool for coral reef line fish on the Great Barrier Reef of Australia Rich Little MSEAS 2016 Oceans and Atmosphere.
Special Session: Landing Obligation
Quantitative analysis methods to explore relationships between recreational uses and biodiversity in a Marine Protected Area network context: Case study.
Sophie Gourguet, O. Thébaud
Construction of nature reserves
ICES ASC, Bergen, 18 September 2012
Cape Town, South Africa, November 2017
Presentation transcript:

Management Scenarios for Fished Resources of the New Caledonian Lagoon Using a Spatially-Explicit Model Dire ici que cela fait partie d’une thèse mené sur plusieurs espèces. The coral trout is one of the most targeted species in New-Caledonia. Bastien PREUSS Dominique Pelletier and Laurent Wantiez UNC/LIVE – IFREMER/LEAD – IRD/CoRéUs2 – ZONECO Tuesday 23th 2014, FFMB, Nouméa

Introduction Approach Model Calibration SA Scenarios Conclusion Context New-Caledonia: 19 058 km² land 19 954 km² lagoon 250 000 inhabitants NC a french territories right in front of Cairns in the other side of the Coral sea. Are as many lagoon as land

Introduction Approach Model Calibration SA Scenarios Conclusion Context New-Caledonia: 19 058 km² land 19 954 km² lagoon 250 000 inhabitants Noumea and suburbs: 170 000 inhabitants Important fishing pressure Management : MPA network (7 units) Growing population: Request for additional management measures Decision support tool MPA (no take) Legend UNESCO World Heritage Central area Buffer area Main part of the population is situated in Noumea city and suburbs. Fishing pressure from both professional and recreational fishing. Management is based on a network of 7 MPA, gear restriction and 40 kg dealy limit for non professionals.

Approach Natural system Existing knowledge Field work ISIS-Fish model Introduction Approach Model Calibration SA Scenarios Conclusion Approach Natural system Existing knowledge Field work ISIS-Fish model Modeled system We used calibration procedures to fit the model on observations. Calibration Sensitivity analysis Management scenarios assessment

Introduction Approach Model Calibration SA Scenarios Conclusion Isis-Fish spatially explicit population and fisheries dynamic model. ISIS-Fish Population model Fisheries model Management model Isis-Fish is a spatialy explicit model constituted of 3 sub-models : population model, fisheries model and management model. Simulation of the modeled system

Introduction Approach Model Calibration SA Scenarios Conclusion Population model Study site Population Age groups Z1 … … … Zk … … … Zm

Introduction Approach Model Calibration SA Scenarios Conclusion Population model Year 1 Year 2 Year 0 Time Movement Recruitment We used matrix caculation. Fishing mortality is part of the survival rate. Reproduction Natural mortality + Fishing mortality Change of age group

Introduction Approach Model Calibration SA Scenarios Conclusion Biology and ecology : Max length : 62 cm Max age : 27 years Macrocarnivore Non territorial Hermaphrodite protogynous High mobility Espérance de vie des espèces. Croissance, reproduction, mortalité, mobilité Manque de connaissance important !!! Biology and ecology : Max length : 120 cm Max age : 26 years Piscivore Territorial Hermaphrodite protogynous Low mobility Soutenance de thèse B. PREUSS - 8 octobre 2012

Introduction Approach Model Calibration SA Scenarios Conclusion Spatial structure

Introduction Approach Model Calibration SA Scenarios Conclusion Spatial structure North – South gradient North Center South Dire pourquoi on a choisi ces gradients. South edge

Introduction Approach Model Calibration SA Scenarios Conclusion Spatial structure Coast – Barrier reef gradient Coast Intermediate Barrier

Introduction Approach Model Calibration SA Scenarios Conclusion Spatial structure

Introduction Approach Model Calibration SA Scenarios Conclusion Spatial structure Introduction Approach Model Calibration SA Scenarios Conclusion North Center South South edge Coast Intermediate Dire que cette structuration est issue d’un compromis entre échelle des données, point de vue des gestionnaires, et capacités informatiques. Barrier MPA

Introduction Approach Model Calibration SA Scenarios Conclusion Fish mobility North Center South South edge Coast Dispersal Intermediate Marquer un temps mort pour passer au modèle Reproduction Barrier MPA

Nb of fishing strategies Introduction Approach Model Calibration SA Scenarios Conclusion Fishing activities Professional logbook data Recreational field work interviews Data analysis = MCA + HCA Nb of fishing strategies Annual catch Professional 2 3.5 t 20.5 t Recreational 19 147.4 t 5.8 t MCA = Multiple corrospondance analysis HCA = Hierarchical clustering analysis Strategies are base on boat caracteristcs, fishing gears, fishing season, fishing zones, activity planning.

Introduction Approach Model Calibration SA Scenarios Conclusion Natural system Observations = ? Modeled system Model outputs Parameters X Minimisation of an target fonction by multiple objective calibration : f = ( observed - modeled ) ² La calibration permet : de faire correspondre les sorties du modèle aux observations (captures, CPUE, densité). de déterminer la valeurs de certains paramètres inconnus (capturabilité, effectif initiaux). 8559 simulations is 34.5 days Fenicia et al., 2005, 2007. Soutenance de thèse B. PREUSS - 8 octobre 2012

Introduction Approach Model Calibration SA Scenarios Conclusion Validation Validation Recreational Annual cath (kg) Professional Simulated Observed estimated Regrouper les 2 barplot en un seul en remplaçant les zone uniquement par les pro ou plais. Si le temps, dire que les abondances présentes sur les récifs avec UVC ne suffisent pas a entretenir les captures, et qu’une partie de la population est probablement sur les fonds meubles et sur les récifs plus profonds. Ceci est suggéré par une étude de Wantiez de 1992. Initial conditions have been determinated using calibration procedure…

Introduction Approach Model Calibration SA Scenarios Conclusion Sensitivity Analysis Interest : highlighting main sources of uncertainty Method : fractional factorial simulation plan We tested different value of parameters using a fractional factorial design.

Introduction Approach Model Calibration SA Scenarios Conclusion Results Population biomass Catches Indice de sensibilité Indice de sensibilité Sensitive parameters Pre-recruitement mortality Max length (Linf) Juvenile natural mortality Adulte natural mortality Nomber of recreational boats Gear selectivity Gear standardisation factor Préciser l’espèce

Introduction Approach Model Calibration SA Scenarios Conclusion Scenario 1 Reference (statu quo) Scenario 2 Creation of 1 MPA Scenario 3 Legal size (maturity) Scenario 4 10 more professional fishing licences

Management scenarios assessment under uncertainty Introduction Approach Model Calibration SA Scenarios Conclusion Other sources of uncertainty Recruitment H1 H2 reference optimistic Recruitment uncertainty Management Management Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Other sources of uncertainty We realised a simulation plan to evaluate uncertainty from other sources, under the hypothesis of no peak of recruitment. Management scenarios assessment under uncertainty Simulation plan Scenario 1 Scenario 2 Scenario 3 Scenario 4

Management scenarios assessment Introduction Approach Model Calibration SA Scenarios Conclusion Management scenarios assessment Statu quo 10 pro Legal size MPA Population biomass Catches H2 H1 Essayer de faire rentrer les 3 espèces (quand ça donne la même chose, le dire et faire passer en petit ou rapidement le graph de l’autre espèce). Comme il n’y a que H1 et H2 qui ressort montrer cela et ne pas mettre la légende des 4 scénarios. Faire ressortir le scénario taille min. Pour rendre plus lisible : supprimer la légende et les mettre directement près des courbes. On ne montre pas les boxplot, on dit que ça ne change pas les tendances des scénarios (mais pas testé pour conditions initiales plus défavorable pour les stocks). H2 H1

Management scenarios assessment Introduction Approach Model Calibration SA Scenarios Conclusion Management scenarios assessment Pour taille minimale il faut voir qu’il y a bcp de rejets que l’on ne voit pas ici donc effet important du taux de survie.

Introduction Approach Model Calibration SA Scenarios Conclusion Focus on MPA Local effect Biomass variation (%) between scenario statu quo and scenario MPA Zone Sud-AMP 0.2 Sud-Int-AMP 128.3 Corne Sud 0.0 0.01 Sud -0.2 Sud-Int -32.3 Centre-AMP Sud-Barr -10.5 Centre Sud-Côte Nord Centre-Inter-AMP Centre-Inter -0.1 Centre-Barr-AMP Centre-Barr Centre-Côte-AMP -- Centre-côte Nord-Int Nord-Barr Nord-Côte Peut être rajouter la carte avec les zones en petit pour que l’on se figure bien où l’on se trouve. Ajouter un titre plus accrocheur. (conséquences des scénarios sont hétérogènes en fonction des zones). On ne montre pas les boxplot, on dit que ça ne change pas les tendances des scénarios (mais pas testé pour conditions initiales plus défavorable pour les stocks).

Introduction Approach Model Calibration SA Scenarios Conclusion Dire que l’effet de la taille min dépend du taux de survi.

Populations Captures MPA Legal size ++ + - - - + 10 pro Introduction Approach Model Calibration SA Scenarios Conclusion Fish populations Fisheries Knowledges review and data analysis Constraint = Data Field and data analysis Lack of knowledge Uncertainty (precision of data) Lack of knowledge Uncertainty (Reproduction – recruitement ; stock assessment) Research goal Management goal Populations Captures MPA Legal size ++ + - - - + 10 pro Scenarios assessment Synthèse biblio : clarification de biologie et écologie des espèces. De plus, avec AS -> aspect clefs de la dynamique des pop et des pêches pour axes de recherche future. Les différents résultats (voir les 4 diapo) apporté par le modèle, et qui ne sont pas apporté par d’autre approche (aspects spatio, aspets dynamiques, et quelles catégories de pêcheurs y gagne ou y perd (intéressant pour les gestionnaires)). Et ce malgré le manque de données. C’est la réponse à qu’apporte le modèle. Revenir sur la contribution d’intégration des connaissances via le modèle. + - Constraint = Computer capability Soutenance de thèse B. PREUSS - 8 octobre 2012

Introduction Approach Model Calibration SA Scenarios Conclusion Perspectives Assessing more hypothesis of recruitment. Assessing different types of mobility (density dependence). Assessing different hypotheses of larval dispersal. Assessing more management scenarios (MPA location, MPA network, large vs small). Dire que l’effet de la taille min dépend du taux de survi.

Introduction Approach Model Calibration SA Scenarios Conclusion Thank you Bon appétit !

Management scenarios assessment Introduction Approach Model Calibration SA Scenarios Conclusion Management scenarios assessment Statu quo MPA Legal size 10 pro Statu quo 10 pro Legal size MPA H2 Biomass H1 Effect of legal size is conditionned by survival rate of released fish. Statu quo MPA Legal size 10 pro Statu quo 10 pro Legal size MPA H2 Catch H1

Méthode d’Analyse de sensibilité Introduction Démarche Modèle Espèces Pêche Calibration AS Scénarios Conclusion Méthode d’Analyse de sensibilité Modèle Sorties du modèle Paramètre x i valeurs par paramètre Si i = 2 Plan d’expérience factoriel fractionnaire 2k simulations J’ai testé i (2 ou 3) valeurs par paramètres, mais étant donnée le nombre de combinaison avec l’ensemble des paramètres à tester, j’ai utilisé un plan factoriel fractionnaire qui permet d’optimiser le nombre de simulations nécessaire pour dégager l’effet de chaque paramètres. Ajouter quelques références biblio. Préciser les méthodes utilisées. temps de calcul disponible = nbr simu * nbr modalité * temps 1 simu / capacité informatique Classement des paramètres Plan factoriel fractionnaire Indice de sensibilité 137 simulations soit 6 jours Soutenance de thèse B. PREUSS - 8 octobre 2012

Recruitment (3 months/yr) Introduction Approach Model Calibration SA Scenarios Conclusion Recruitment (3 months/yr) Stock-recruitment: 1 simulation (red line) Random recruitment : 35 simulations (black lines) H2 H1

Recruitment (1 month/yr) Introduction Approach Model Calibration SA Scenarios Conclusion Recruitment (1 month/yr) 1 year of recruitment (1 cohort) support the population Yr 1 Yr 2 Yr 3 Yr 4 Yr 5 Yr 6 Yr 7 Yr 8 Yr 9 Yr 10 Yr 11 Yr 12 Yr 13 Yr 14 H2 Cohort.