2011/03/23 Moriond QCD 2011John Chin-Hao Chen1 The story of v 3 John Chin-Hao Chen ( 陳勁豪 ) for PHENIX Collaboration Stony Brook University Moriond QCD.

Slides:



Advertisements
Similar presentations
Measurement of elliptic and higher order flow at Pb+Pb Collisions with the ATLAS detector Soumya Mohapatra for the ATLAS Collaboration Stony Brook University.
Advertisements

Azimuthal Correlation Studies Via Correlation Functions and Cumulants N. N. Ajitanand Nuclear Chemistry, SUNY, Stony Brook.
Multi-Particle Azimuthal Correlations at RHIC !! Roy A. Lacey USB - Chem (SUNY Stony Brook ) What do they tell us about Possible Quenching?
Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
Flow workshop, BNLShinIchi Esumi, Tsukuba1 Charged particle v2 and azimuthal pair correlation with respect to the reaction plane at PHENIX ShinIchi Esumi.
What do we Learn From Azimuthal Correlation Measurements in PHENIX Roy. A. Lacey Nuclear Chemistry, SUNY, Stony Brook.
1 Jet Structure of Baryons and Mesons in Nuclear Collisions l Why jets in nuclear collisions? l Initial state l What happens in the nuclear medium? l.
Jet Reconstruction in PHENIX l Mike McCumber – University of Colorado & l Barbara Jacak – Stony Brook University With thanks to Yue Shi Lai and John Chen.
Measurements of long-range angular correlation and identified particle v 2 in 200 GeV d+Au collisions from PHENIX Shengli Huang Vanderbilt University for.
Identified particle v 3 measurements at 200 GeV Au+Au collisions at RHIC-PHENIX experiment Sanshiro Mizuno for PHENIX Collaboration University of Tsukuba.
Physics with ALICE-PMD Basanta K. Nandi IIT Bombay For PMD collaboration.
1 How to measure flow and the reaction plane? N. N. Ajitanand Nuclear Chemistry, SUNY, Stony Brook.
2009/Sep/15, flow workshop, ECT* TrentoShinIchi Esumi, Univ. of Tsukuba1 Jet - flow(v 2 ) correlation ShinIchi Esumi Inst. of Physics, Univ. of Tsukuba.
Understanding Jet Energy Loss with Angular Correlation Studies in PHENIX Ali Hanks for the PHENIX Collaboration 24 th Winter Workshop on Nuclear Dynamics.
Understanding Jet Energy Loss with Angular Correlation Studies in PHENIX Ali Hanks for the PHENIX Collaboration 24 th Winter Workshop on Nuclear Dynamics.
High p T identified hadron anisotropic flow and Deuteron production in 200 GeV Au+Au Collisions Shengli Huang Vanderbilt University for the PHENIX Collaboration.
High p T identified charged hadron v 2 and v 4 in 200GeV AuAu collisions by the PHENIX experiment Shengli Huang Vanderbilt University for the PHENIX Collaboration.
Heavy-Ion Cafe, 30/Jun/2007, TokyoShinIchi Esumi, Inst. of Physics, Univ. of Tsukuba1 Jet correlation and modification at RHIC and 3 particle correlation.
John Chin-Hao Chen1 Quark Gluon Plasma: the Hottest Matter on Earth John Chin-Hao Chen ( 陳勁豪 ) RIKEN Brookhaven Research Center Brookhaven National.
Two particle correlations with respect to higher harmonic plane in Au+Au 200 GeV collisions at RHIC-PHENIX Takahito Todoroki for the PHENIX Collaboration.
KEK seminar, 5/Nov/2008Univ. of Tsukuba, ShinIchi Esumi1 Jet correlation (Mach-cone, Ridge) at RHIC ShinIchi Esumi Inst. of Physics, Univ. of Tsukuba Contents.
S.A. Voloshin Collective flow and properties of QGP, BNL, November 2003page1 Azimuthal correlations and anisotropic flow: trends and questions Sergei A.
N. N. Ajitanand Nuclear Chemistry, SUNY, Stony Brook For the PHENIX Collaboration Two and Three particle Flavor Dependent Correlations Remember the hungarian.
M. Issah QM04 1 Azimuthal Anisotropy Measurements in PHENIX via Cumulants of Multi-particle Azimuthal Correlations Michael Issah (SUNY Stony Brook ) for.
13/Aug/2013, Fluc. & Corr. Workshop, Chengdu, China ShinIchi Esumi, Univ. of Tsukuba1 Flow and Jet-correlation ShinIchi Esumi Univ. of Tsukuba Flow originated.
Centrality Categorization and its Application to Physics Effects in High-Energy d+A Collisions Javier Orjuela-Koop University of Colorado Boulder For the.
Latest QCD and small-x physics results in p+p, d+Au and Au+Au collisions from PHENIX Stefan Bathe Baruch College, CUNY, and RBRC For the PHENIX Collaboration.
Recent results on Quark Gluon Plasma and Future Plans
Hydrodynamics, together with geometric fluctuations of the Glauber model make specific predictions for a dipole and triangle terms in the observed azimuthal.
1 Highlights of RHIC Results Ju Hwan Kang Yonsei University 2008 APCTP Workshop on "Nuclear Physics in Science Business Belt: Future Heavy Ion Accelerator.
Hadron Collider Physics 2012, 12/Nov/2012, KyotoShinIchi Esumi, Univ. of Tsukuba1 Heavy Ion results from RHIC-BNL ShinIchi Esumi Univ. of Tsukuba Contents.
WWND 2011, Winter Park, CO, 7/Feb/2011ShinIchi Esumi, Univ. of Tsukuba1 v n {EP} measurements with forward rapidity  n in 200GeV Au+Au collisions at RHIC-PHENIX.
Wuhan meeting, 4-6/Dec/2008ShinIchi Esumi, Univ. of Tsukuba1 Jet study at RHIC and Jet reconstruction study at LHC energy for ALICE experiment ShinIchi.
N. N. Ajitanand Nuclear Chemistry, SUNY Stony Brook For the PHENIX Collaboration RHIC & AGS Users Meeting June Investigation of Parity Violation.
Nuclear Size Fluctuations in Nuclear Collisions V.Uzhinsky, A.Galoyan The first RHIC result – Large elliptic flow of particles.
PHENIX results on centrality dependence of yields and correlations in d+Au collisions at √s NN =200GeV Takao Sakaguchi Brookhaven National Laboratory for.
21 st WWND, W. Holzmann Wolf Gerrit Holzmann (Nuclear Chemistry, SUNY Stony Brook) for the Collaboration Tomographic Studies of the sQGP at RHIC: the next.
2008/04/12APS April Meeting 1 Decomposition of Awayside Components of Dijet Correlation in Au+Au Collisions at √S NN = 200 GeV at PHENIX Chin-Hao Chen.
1 Effect of Eccentricity Fluctuations and Nonflow on Elliptic Flow Methods Jean-Yves Ollitrault, Art Poskanzer, and Sergei Voloshin QM09.
1 Probing dense matter at extremely high temperature Rudolph C. Hwa University of Oregon Jiao Tong University, Shanghai, China April 20, 2009.
The Double Ridge Phenomenon in p-Pb Collisions Measured with ALICE Jan Fiete Grosse-Oetringhaus, CERN for the ALICE Collaboration Moriond QCD 2013.
06/Feb/2009 High pT Physics, PragueShinIchi Esumi, Univ. of Tsukuba1 Interplay between jet and v 2 ShinIchi Esumi Inst. of Physics, Univ. of Tsukuba measurements.
Measurement of Azimuthal Anisotropy for High p T Charged Hadrons at RHIC-PHENIX The azimuthal anisotropy of particle production in non-central collisions.
Kirill Filimonov, ISMD 2002, Alushta 1 Kirill Filimonov Lawrence Berkeley National Laboratory Anisotropy and high p T hadrons in Au+Au collisions at RHIC.
Intermediate pT results in STAR Camelia Mironov Kent State University 2004 RHIC & AGS Annual Users' Meeting Workshop on Strangeness and Exotica at RHIC.
Masashi Kaneta, RBRC, BNL 2003 Fall Meeting of the Division of Nuclear Physics (2003/10/31) 1 KANETA, Masashi for the PHENIX Collaboration RIKEN-BNL Research.
Jet-Hadron Azimuthal Correlation Measurements in pp Collisions at √s = 2.76 TeV and 7 TeV with ALICE 2012/08/11-18 Quark Matter 2012 Motivation PhysRevC (CMS)PhysRevC (PHENIX)
Global and Collective Dynamics at PHENIX Takafumi Niida for the PHENIX Collaboration University of Tsukuba “Heavy Ion collisions in the LHC era” in Quy.
Soft physics in PbPb at the LHC Hadron Collider Physics 2011 P. Kuijer ALICECMSATLAS Necessarily incomplete.
TWO PARTICLE CORRELATION MEASUREMENTS AT PHENIX Takahito Todoroki For the PHENIX Collaboration University of Tsukuba & RIKEN Nishina Center Hard Probes.
Review of ALICE Experiments
Jiangyong Jia for the ATLAS Collaboration
ShinIchi Esumi, Inst. of Physics, Univ. of Tsukuba
ATLAS vn results vn from event plane method
Experimental Studies of Quark Gluon Plasma at RHIC
Heavy Ion Ohsaka University Takahito Todoroki
ShinIchi Esumi, Univ. of Tsukuba
Analisi del flow con il metodo dei coefficienti di Fourier
p+p jet+jet
John Chin-Hao Chen RIKEN Brookhaven Research Center
Eitaro Hamada, Univ. of Tsukuba
A simulation study of fluctuation effect on harmonic flow
Event anisotropy measurements in RHIC-PHENIX
Two particle correlations with higher harmonic reaction plane in Au+Au 200 GeV collisions at RHIC-PHENIX T. Todoroki for the Collaboration.
ShinIchi Esumi, Univ. of Tsukuba
Third DNP/JPS Joint Meeting, 14th October 2009
Introduction of Heavy Ion Physics at RHIC
Two particle hadron correlations with higher harmonic reaction plane in Au+Au 200 GeV collisions at RHIC-PHENIX T. Todoroki for the PHENIX Collaboration.
Identified Particle Production at High Transverse Momentum at RHIC
Hiroshi Masui / Univ. of Tsukuba
Presentation transcript:

2011/03/23 Moriond QCD 2011John Chin-Hao Chen1 The story of v 3 John Chin-Hao Chen ( 陳勁豪 ) for PHENIX Collaboration Stony Brook University Moriond QCD 2011/03/23

2011/03/23 Moriond QCD 2011John Chin-Hao Chen2 outline What is v 3 ? How to measure v 3 ? How do theorist think of v 3 ? Does v 3 explains the jet shape modification (ridge and shoulder)?

2011/03/23 Moriond QCD 2011John Chin-Hao Chen3 v n : particle anisotropy Spatial distribution of colliding area is “almond” like due to overlap of two colliding nuclei. dN/d(  -  ) =N 0 (  (1+2v n cosn(  -  ))) v 2 = elliptic flow If nuclei is perfect spherical-> no v odd With some initial state fluctuation -> finite v odd ?

2011/03/23 Moriond QCD 2011John Chin-Hao Chen4 Glauber initial state The nuclear is not perfect in shape Nucleon distribution is not smooth Azimuthal symmetry no longer holds v odd is possible

2011/03/23 Moriond QCD 2011John Chin-Hao Chen5 2-D  correlations shoulder ridge   rad  Peripheral Au+Au/pp Central Au+Au Both near and away side are modified!

2011/03/23 Moriond QCD 2011John Chin-Hao Chen6 v 3, reason for ridge and shoulder? Ridge sits at  ~ 0, shoulder sits at  ~2  /3, 4  /3 –A 3-peak structure! v 3 (Fourier Coefficient of the cos3  term) gives a natural 3-peak structure Is v 3 the explanation? Need to measure v3 to answer this question!

2011/03/23 Moriond QCD 2011John Chin-Hao Chen7 How do we measure v 3 ? Reaction plane method –Use forward detector to determine the n-th reaction plane Two particle correlation method –No need to determine the reaction plane –central-central two particle correlations

2011/03/23 Moriond QCD 2011John Chin-Hao Chen8 S. Esumi, WWND2011

2011/03/23 Moriond QCD 2011John Chin-Hao Chen9 Measuring v n with  n Use the forward detector to determine the nth event plane,  n Measure v n respect to  n and correct with reaction plane resolution  n

2011/03/23 Moriond QCD 2011John Chin-Hao Chen10 S. Esumi, WWND2011

2011/03/23 Moriond QCD 2011John Chin-Hao Chen11 v n from two particle correlations Standard v 2 (v 4 ): single particle vs. reaction plane dN/d(  Can also measure v n via two particle correlation –Central-central correlation (0.3<|  |<0.7) –PHENIX: Phys. Rev. Lett. 89, (2002) –dN AB /d  = N(1+  (2C n cos(n  ))), C n = v n A v n B the two particles are in the same event, therefore share the same reaction plane When p T A = p T B, v n = sqrt(C n ) With low partner p T (below 1 GeV), the jet contribution can be ignored, but not at high p T

2011/03/23 Moriond QCD 2011John Chin-Hao Chen12 v 2 {2p}, v 3 {2p} from two particle correlations v 2 {2p} agrees with previous PHENIX measurements at low p T v 3 {2p} –Nonzero –Increases with p T (NB: may have non-flow effects in this method) –Increases with centrality v 2 {2p}, v 3 {2p}, Dash line is PHENIX v 2 measured by event plane Phys. Rev. Lett. 105, (2010)

2011/03/23 Moriond QCD 2011John Chin-Hao Chen13 2-particle (small  ) v 3 higher than reaction plane (large  v 3 should expect non-flow contribution i.e. jets Compare with v 3 measured by  3 RP 2P v3v3

2011/03/23 Moriond QCD 2011John Chin-Hao Chen14 Compare with Hydro calculation Large  gap measurement (bulk only) agrees well with hydro prediction!

2011/03/23 Moriond QCD 2011John Chin-Hao Chen15 What about non-flow in v 3 ? Use jets in p+p to calibrate! Do a Fourier analysis of the per trigger yield jet function –JF =  C n cos(n  ) –For Au+Au: combinatorial background “b 0 (1+2v 2 trig v 2 part cos2  )” removed via ZYAM –ZYAM will not change any Fourier coefficients, except C 0 and C 2 Various centrality and partner p T bins for initial insights into bulk vs. jet contributions

2011/03/23 Moriond QCD 2011John Chin-Hao Chen16 Baseline comparison Dijet (pp) and away-side suppressed dijet –pp tells us the pure jet contribution –pp nearside only: the awayside jet is fully suppressed The jets in AuAu (nearside jet + “head”) should fall in between. Fourier strength beyond this is not from the jets. –Jet-bulk contribution! v 2 of bulk (background) flow subtracted when making the jet function

2011/03/23 Moriond QCD 2011John Chin-Hao Chen17 Fourier Spectra of Jet Function v 3 from jet v 3 from jet+bulk+ jet-medium int.? No significant contribution above c4 Removing the awayside pp enhances the c odd terms The c 3 in AuAu has contributions from both jet and bulk!

2011/03/23 Moriond QCD 2011John Chin-Hao Chen18 summary v 2, v 3 and v 4 are measured with  n and two particle correlations. v 3 measured by two particle correlations (small  gap) are consistent with but larger than reaction plane method (large  gap) v 3 from reaction plane method agrees with hydro prediction The third Fourier coefficient in jet function is significantly enhanced in central AuAu collisions due to the v 3 from bulk, but also have some contributions from the jet