Algorithm improvements for Dutch OMI NO2 retrievals (towards v3.0)

Slides:



Advertisements
Similar presentations
Page 1 Tropospheric NO 2 workshop, KNMI, De Bilt NL, Sept 2007M. Van Roozendael Tropospheric NO 2 from space: retrieval issues and perspectives for.
Advertisements

Why study ship NO x emissions? Vinken et al., in prep., % of global NO x emissions 70% of emissions within 400 km of densely populated coast.
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Institute.
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Institute.
A U R A Satellite Mission T E S
Harmonisation of stratospheric NO 2 /O 3 column data products NORS/NDACC UV-VIS meeting, Brussels, 3-4 July F. Hendrick and M. Van Roozendael Belgian.
Improvement and validation of OMI NO 2 observations over complex terrain A contribution to ACCENT-TROPOSAT-2, Task Group 3 Yipin Zhou, Dominik Brunner,
CPI International UV/Vis Limb Workshop Bremen, April Development of Generalized Limb Scattering Retrieval Algorithms Jerry Lumpe & Ed Cólon.
Folkert Boersma, D. Jacob, R. Park, R. Hudman – Harvard University H. Eskes, P. Veefkind, R. van der A, P. Levelt, E. Brinksma – KNMI A. Perring, R. Cohen,
AQUA AURA The Berkeley High Spatial Resolution(BEHR) OMI NO2 Retrieval: Recent Trends in NO2 Ronald C. Cohen University of California, Berkeley $$ NASA.
Cloud algorithms and applications for TEMPO Joanna Joiner, Alexander Vasilkov, Nick Krotkov, Sergey Marchenko, Eun-Su Yang, Sunny Choi (NASA GSFC)
M. Van Roozendael, AMFIC Final Meeting, 23 Oct 2009, Beijing, China1 MAXDOAS measurements in Beijing M. Van Roozendael 1, K. Clémer 1, C. Fayt 1, C. Hermans.
Tropospheric NO2 and ozone Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Jos de Laat, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Thessaloniki,
Trends and seasonal variability in tropospheric NO 2 Ronald van der A, David Peters, Henk Eskes, Folkert Boersma ESA-NRSCC DRAGON Cooperation Programme.
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, October 2008.
SO2 and HCHO data from satellite & MAXDOAS instrument in Beijing Jos van Geffen Michel Van Roozendael, Isabelle De Smedt BIRA-IASB 1st AMFIC progress meeting.
ARCTAS BrO Measurements from the OMI and GOME-2 Satellite Instruments
A. Bracher, L. N. Lamsal, M. Weber, J. P. Burrows University of Bremen, FB 1, Institute of Environmental Physics, P O Box , D Bremen, Germany.
Validation workshop, Frascati, 13 December 2002Page 1 SCIAMACHY products quality and recommendations Based on presentations and discussions during this.
SAO OMI formaldehyde, water vapor and glyoxal retrievals Gonzalo Gonzalez Abad Helen Wang Christopher Miller Kelly Chance Xiong Liu Thomas Kurosu OMI Science.
Estimating anthropogenic NOx emissions over the US using OMI satellite observations and WRF-Chem Anne Boynard Gabriele Pfister David Edwards AQAST June.
Retrieval of Ozone Profiles from GOME (and SCIAMACHY, and OMI, and GOME2 ) Roeland van Oss Ronald van der A and Johan de Haan, Robert Voors, Robert Spurr.
Folkert Boersma Reducing errors in using tropospheric NO 2 columns observed from space.
1 Traffic Restrictions Associated with the Sino-African Summit: Reductions of NO x Detected from Space Yuxuan Wang, Michael B. McElroy, K. Folkert Boersma.
Intercomparison of OMI NO 2 and HCHO air mass factor calculations: recommendations and best practices A. Lorente, S. Döerner, A. Hilboll, H. Yu and K.
MAX-DOAS observations and their application to validations of satellite and model data in Wuxi, China 1) Satellite group, Max Planck institute for Chemistry,
SATELLITE OBSERVATIONS OF ATMOSPHERIC CHEMISTRY Daniel J. Jacob.
Validation of OMI NO 2 data using ground-based spectrometric NO 2 measurements at Zvenigorod, Russia A.N. Gruzdev and A.S. Elokhov A.M. Obukhov Institute.
OMI validation workshop - 22 nd June 2006 Louisa. J. Kramer (1), Paul. S. Monks (2), Roland. J. Leigh (1) (1) Earth Observation Science, Space Research.
OMI validation by ground-based remote sensing: ozone columns and atmospheric profiles A. Shavrina,Ya. Pavlenko, A. Veles, I. Synyavsky, M. Sosonkin, Ya.
Evaluation of OMI total column ozone with four different algorithms SAO OE, NASA TOMS, KNMI OE/DOAS Juseon Bak 1, Jae H. Kim 1, Xiong Liu 2 1 Pusan National.
Trace gas algorithms for TEMPO G. Gonzalez Abad 1, X. Liu 1, C. Miller 1, H. Wang 1, C. Nowlan 2 and K. Chance 1 1 Harvard-Smithsonian Center for Astrophysics.
Henk Eskes, OMI meeting June 2006 OMI Nitrogen Dioxide: The KNMI Near-Real Time Product Henk Eskes, Pepijn Veefkind, Folkert Boersma, Ronald van.
C. Lerot 1, M. Koukouli 2, T. Danckaert 1, D. Balis 2, and M. Van Roozendael 1 1 BIRA-IASB, Belgium 2 LAP/AUTH, Greece S5P L2 Verification Meeting – 19-20/05/2015.
1 Examining Seasonal Variation of Space-based Tropospheric NO 2 Columns Lok Lamsal.
H 2 O retrieval from S5 NIR K. Weigel, M. Reuter, S. Noël, H. Bovensmann, and J. P. Burrows University of Bremen, Institute of Environmental Physics
MACC-II analyses and forecasts of atmospheric composition and European air quality: a synthesis of observations and models Richard Engelen & the MACC-II.
AMFIC Progress Meeting, Barcelona, 24 June Space-nadir observations of formaldehyde, glyoxal and SO 2 columns with SCIAMACHY and GOME-2. Isabelle.
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
Henk Eskes, ERS-ENVISAT symposium 2004 Retrieval, validation and assimilation of SCIAMACHY ozone columns Henk Eskes, Ronald van der A, Ellen Brinksma,
1 Xiong Liu Harvard-Smithsonian Center for Astrophysics K.V. Chance, C.E. Sioris, R.J.D. Spurr, T.P. Kurosu, R.V. Martin, M.J. Newchurch,
Lok Lamsal, Nickolay Krotkov, Sergey Marchenko, Edward Celarier, William Swartz, Wenhan Qin, Alexander Vasilkov, Eric Bucsela, Dave Haffner 19 th OMI Science.
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Barcelona, June 2009.
Folkert Boersma, D.J. Jacob, R.J. Park, R.C. Hudman – Harvard University H.J. Eskes, J.P. Veefkind, R.J. van der A, P.F. Levelt, E.J. Brinksma – KNMI A.
Validation of OMI and SCIAMACHY tropospheric NO 2 columns using DANDELIONS ground-based data J. Hains 1, H. Volten 2, F. Boersma 1, F. Wittrock 3, A. Richter.
ESA :DRAGON/ EU :AMFIC Air quality Monitoring and Forecasting In China Ronald van der A, KNMI Bas Mijling, KNMI Hennie Kelder KNMI, TUE DRAGON /AMFIC project.
Page 1 OMI ST Meeting #11, KNMI, De Bilt, The Netherlands, June 2006 Validation of OMI trace gas products Main contributors (this work): Michel Van.
Challenge the future Corresponding author: Delft University of Technology Collocated OMI DOMINO and MODIS Aqua aerosol products.
SADDU Meeting, March 2009, SRON, Utrecht1 Recent progress on nadir UV-Vis retrievals at BIRA M. Van Roozendael 1 C. Lerot 1, I. De Smedt 1, N. Theys.
OMI Nitrogen Dioxide Workshop Ellen Brinksma, Folkert Boersma.
GOME2 Error Study WP 150: Basic SNR column retrieval PM2 10/2001 SNR Basic Column Retrieval R. De Beek, M. Weber,
Iodine Monoxide (IO) Nadir Scientific Data Product
Physics and Astronomy An improved retrieval of tropospheric NO2 from space over polluted regions using an Earth radiance reference Jasdeep S. Anand
DOAS workshop 2015, Brussels, July 2015
UV/VIS backscattered Sun light retrievals from space born platforms
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
Concurrent measurements of tropospheric NO2 from OMI and SCIAMACHY
TOP-DOWN CONSTRAINTS ON EMISSION INVENTORIES OF OZONE PRECURSORS
X. Liu1, C.E. Sioris1,2, K. 11/14/2018 Ozone Profile and Tropospheric Ozone Retrieval from SCIAMACHY Nadir Measurements:
Harvard-Smithsonian Center for Astrophysics
Randall Martin Aaron Van Donkelaar Daniel Jacob Dorian Abbot
An Improved Retrieval of Tropospheric Nitrogen Dioxide from GOME
Satellite Remote Sensing of Ozone-NOx-VOC Sensitivity
Space-based Diagnosis of Surface Ozone Sensitivity to Anthropogenic Emissions Randall Martin Aaron Van Donkelaar Arlene Fiore.
Intercomparison of SCIAMACHY NO2, the Chimère air-quality model and
OMI Tropospheric NO2 in China
6th TEMPO Science Team Meeting
SATELLITE OBSERVATIONS OF OZONE PRECURSORS FROM GOME
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
MEASUREMENT OF TROPOSPHERIC COMPOSITION FROM SPACE IS DIFFICULT!
Presentation transcript:

Algorithm improvements for Dutch OMI NO2 retrievals (towards v3.0) Folkert Boersma, Jos van Geffen, Bram Maasakkers, Henk Eskes, Jason Williams, and Pepijn Veefkind

1. Spectral fitting (lead: Jos van Geffen) OMI NO2 slant columns higher than GOME-2 & SCIAMACHY (similar to findings N. Krotkov) A difference of about 0.5x1015 molec/cm2 is expected due to difference in observation time So what else is different? Well a lot: fitting window, included reference spectra, polynomial degree, wavelength calibration approaches OMI GOME-2 SCIAMACHY fit window [nm] 405 – 465 425 – 450 426.5 – 451.5 secondary trace gases O3, H2O O3, H2O, O2-O2 pseudo-absorbers Ring degree of polynomial 5 3 2 slant column processing * KNMI / NASA BIRA-IASB *) Data assimilation, separation of tropospheric and stratospheric column, and conversion to total columns for all at KNMI.

A. Improve solar reference spectrum Update of high-resolution solar spectrum: - better representation of OMI ITF (measured) - better Ring-spectrum and I0-corrected reference spectra New solar spectrum improves effective λ-calibration With old parameterized ITF Now OMI slit function instead of parameterized broadened Gaussian High-resolution solar spectrum from Kurucz but through updated OMI slit function RMS of fit: -17% NO2 slant columns: -6% Other reference spectra otherwise identical to OMNO2A

B. Improve other reference spectra NO2: still Vandaele et al. [1998] but with new ITF O3: Bogumil et al. [2000] instead of obscure WMO-1975 H2O: HITRAN-2012 intead of HITRAN-2004 O2-O2: Now included! LQW: Now included! Stronger amplitude in new NO2 cross section! Now OMI slit function instead of parameterized broadened Gaussian High-resolution solar spectrum from Kurucz but through updated OMI slit function O2-O2: Thalman and Volkamer LQW: Pope and Fry RMS of fit: -30% NO2 slant columns: -11%

Including liquid water Fit results for cloudy pixels are not affected much when including liquid water absorption. Including liquid water absorption in the NO2 fit is a good idea. All these processes are interacting on one another Strong feature for clear water pixel !

Including LQW and O2-O2 improves the fit More realistic ozone columns Lowest RMS when including both LQW and O2-O2 All these processes are interacting on one another Including LQW and O2-O2 reduces NO2 SCDs by 0.3 1015 molec.cm-2

C. Improve λ-calibration window to map I to I0 Identify λ-calibration window that minimizes RMS/NO2 fit error RMS of fit: -32% NO2 slant columns: -13% Now OMI slit function instead of parameterized broadened Gaussian High-resolution solar spectrum from Kurucz but through updated OMI slit function O2-O2: Thalman and Volkamer LQW: Pope and Fry Best results for 409-428 nm Previously: 408-423 nm

Summary of the spectral fitting improvements Statistical NO2 fitting error reduces from 1.3 to 1.0 x 1015 Good consistency with QDOAS (thanks Isabelle De Smedt) Difference between 425-450 nm and OMI window 0.2-0.4 x 1015 Reduction of 1.0-1.3 x 1015 Now OMI slit function instead of parameterized broadened Gaussian High-resolution solar spectrum from Kurucz but through updated OMI slit function O2-O2: Thalman and Volkamer LQW: Pope and Fry

2. A new framework for DOMINO retrievals The 3-D Tracer Model is at the heart of DOMINO retrieval for: data assimilation to estimate stratospheric NO2 columns a priori NO2 profile shapes input to AMF temperature corrections DOMINO v1 and v2: based on TM4 with 3° × 2° DOMINO v3: based on TM5 on 1° × 1° Bram Maasakkers, M.Sc Motivation for re-coupling: TM4 no longer supported/developed TM5 v3.0 is a benchmarked (Huijnen et al., 2010) model Allows 1° × 1° Employs up-to-date emission inventories more representative for the OMI-era Differences in layering, emissions,

2. Re-coupling worked (3° × 2°) TM4-based TM5-based Differences in layering, emissions White areas: negatives With new TM5: 27% fewer negatives 20-30 Oct 2004

2. Re-coupling worked (3° × 2°) Lower emissions in TM5 TM4-based Differences in layering, emissions Fewer negatives in TM5-based retrieval 20-30 Oct 2004

2. Updating to TM5 at 1° × 1° We improve the retrieval by using TM5 a priori profiles at 1o×1o instead of 3o×2o Better resolved a priori profile shapes lead to a better understanding of pollution gradients observed from space TM4-based Differences in layering, emissions Madrid Madrid

2. Updating to TM5 at 1° × 1° TM4-based 20-30 Oct 2004 Differences in layering, emissions 20-30 Oct 2004 Average tropospheric NO2 2°×3°: 0.31 1015 molec./cm2 1°×1°: 0.31 1015 molec./cm2

2. Updating to TM5 at 1° × 1° Sharper contrast between urban and rural profile shapes will resolve some of the previously found underestimations over hotspot regions (Ma et al., 2013; Shaiganfar et al., 2011) TM4-based Lower AMFs over hotspots Differences in layering, emissions 3x higher surface NO2 for Barcelona in 1x1 vs. 3x2

2. DOMINO with TM5 at 1° × 1° vs. at 3° × 2° Barcelona +22% TM4-based Differences in layering, emissions Some of the urban-rural contrast is indeed a consequence of the coarse a priori profiles

3. Systematic error in O2-O2 cloud pressures Retrieved O2-O2 slant column depends on atmospheric temperature profile LUT for O2-O2 based on fixed AFGL mid-latitude summer T-profile O2-O2 slant columns require T-correction since ‘true’ T-profile may differ strongly from mls-profile Credits: Russ Dickerson, Johan de Haan, Bram Maasakkers Acknowledgment: Johan de Haan

3. Corrections to O2-O2 cloud pressures TM4-based Differences in layering, emissions

3. Impact on NO2 retrievals TM4-based Differences in layering, emissions Higher clouds  more screening  lower AMFs

3. Conclusions Improved NO2 slant columns are smaller by 1.0-1.3 1015 molec.cm-2 with 30% lower fitting residuals Coupled DOMINO to TM5 v3: 27% fewer negatives Improved resolution for a priori profile leads to increases over hotspots (+20%) and stronger contrast urban-rural Temperature-correction for cloud pressures relevant over polluted areas (TROP)OMI NO2 team from 2014 onwards:

Differences between TM4 and TM5 Emissions TM4: POET 1997

Integrate over pressure, not altitude Express number density O2 as a function of pressure and temperature Retrieved slant column will depend on 1/T, but LUT slant columns do not…