CSE 246: Computer Arithmetic Algorithms and Hardware Design Instructor: Prof. Chung-Kuan Cheng Fall 2006 Lecture 11 Cordic, Log, Square, Exponential Functions
Project IEEE Computer Society Author Kit (≤5Pages) Introduction Statement of Problem Approaches Examples Experiments Conclusion 30 Minutes
Cordic Algorithms Coordinate Rotations Digital Computer Rotate vector (x,y) to (x’,y’) α (x’,y’) (x,y)
Cordic Algorithms
Key: Given cos α, sin α, tan α we can derive Cordic Algorithms iαiαi
Find Cordic Algorithms (Example)
Cordic Algorithms
Logarithms – Method 1 Find
Logarithms – Method 1 I. II. III. A table of
Logarithms – Method 1 (Example) Find ln(x), x = = _ x _ _ x _
Logarithms – Method 1 (Example) -ln x = (1.-1) + ln(1.01) + ln( )
Logarithms – Method 2 Let define Initially x<2, ie. y 0 =0 If
Logarithms – Method 2 for i = 1 to l do x = x 2 if x ≥ 2 then y i = 1 x = x/2 else y i = 0
Logarithms – Method 2 (Example) x x __ y 1 = 1 x 2 / x _ y 2 = 1 Find ln 2 (x), x = 1.11 (1.75)
Logarithms – Method 2 (Example) (x 2 /2) 2 /2 = y 3 = 0 ln ≈ 0.110
Squarer x3 x2 x1 x0 X x3 x2 x1 x0 x3x0 x2x0 x1x0 x0x0 x3x1 x2x1 x1x1 x0x1 x3x2 x2x2 x1x2 x0x2 + x3x3 x2x3 x1x3 x0x3 _ x3x2 x3x1 x3x0 x2x0 x1x0 x0 x3 x2x1 x1 + x2 _
Exponentiation e x
I. II. min: max: