Velocity Acceleration Motion at Constant Acceleration “Euclid taught me that without assumptions there is no proof. Therefore, in any argument, examine.

Slides:



Advertisements
Similar presentations
Motion in One Dimension
Advertisements

Kinematics in One Dimension
Physics: Principles with Applications, 6th edition
CH 2: 1D motion.
Kinematics Position, Velocity , and Acceleration Graphs.
Describing Motion: Kinematics in One Dimension
Chapter 2: Describing Motion in 1-D
Chapter 2. Concepts of Motion
Rotational Motion Angular Quantities Angular Kinematics Rolling Motion.
Chapter 2: Kinematics in one Dimension
Chapter 2 Motion Along a Straight Line In this chapter we will study kinematics, i.e., how objects move along a straight line. The following parameters.
Solving Problems With Newton’s Laws. If object A exerts a force on object B, then object B exerts and equal and opposite force on object A. Examples:
Vectors and Two-Dimensional Motion
Chapter 2 Preview Objectives One Dimensional Motion Displacement
Chapter 2 Motion in One Dimension. Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension.
Describing Motion: Kinematics in One Dimension AP Physics Chapter 2.
Motion in One Dimension
Motion in One Dimension
Chapter 2 Motion in One Dimension. Quantities in Motion Any motion involves three concepts Displacement Velocity Acceleration These concepts can be used.
1 Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion.
Chapter 2 Motion in One Dimension. Dynamics The branch of physics involving the motion of an object and the relationship between that motion and other.
Motion in One Dimension. The branch of physics involving the motion of an object and the relationship between that motion and other physics concepts Kinematics.
Coach Kelsoe Physics Pages 48–59
Chapter 2 Motion in One Dimension. Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension.
Chapter 3 Vectors and Two-Dimensional Motion. Vector vs. Scalar Review All physical quantities encountered in this text will be either a scalar or a vector.
Sect. 2-5: Motion at Constant Acceleration. Motion with Constant Acceleration Many practical situations: –The magnitude of the acceleration is uniform.
Objectives 1.Define and calculate acceleration 2.describe how the physics definition of acceleration differs from the everyday definition of acceleration.
Kinematics in One Dimension. Mechanics Kinematics (Chapter 2 and 3) The movement of an object itself Concepts needed to describe motion without reference.
Describing Motion: Kinematics in One Dimension
Ch 2 1 Chapter 2 Kinematics in One Dimension Giancoli, PHYSICS,6/E © Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle.
Motion is Relative We always judge motion by comparing a moving object to something else. The “something else” is called a frame of reference.
Chapter 2 One Dimensional Kinematics
Motion In One Dimension by: Heather Britton. Motion In One Dimension Kinematics - the study of how objects move Frame of reference - what you are comparing.
Describing Motion: Kinematics in One Dimension. Sub units Reference Frames and Displacement Average Velocity Instantaneous Velocity Acceleration Motion.
Ch. 2: Describing Motion: Kinematics in One Dimension.
Chapter 2, Kinematics. Terminology Mechanics = Study of objects in motion. –2 parts to mechanics. Kinematics = Description of HOW objects move. –Chapters.
Ch. 2: Describing Motion: Kinematics in One Dimension.
Chapter 2 Describing Motion: Kinematics in One Dimension.
Chapter 2 Motion in One Dimension. Kinematics Describes motion while ignoring the external agents that might have caused or modified the motion For now,
Ch. 2: Describing Motion: Kinematics in One Dimension.
One-dimensional motion Chapter 2 Motion in 1-D PHY211 Dr. Aaron Titus Note that all definitions, terms, conclusions, and analysis applies to motion in.
Chapter 3 : Motion Weerachai Siripunvaraporn Department of Physics, Faculty of Science Mahidol University &msn :
Raymond A. Serway Chris Vuille Chapter Two Motion in One Dimension.
Homework Problem 2.47 Step 0: Think! This is a kinematics problem because it has a rock falling (constant acceleration) and sound waves traveling through.
PREVIOUS QUIT NEXT START SLIDE Quiz by Dr. John Dayton Physics Quiz MOTION IN ONE DIMENSION Each question is multiple choice. Select the best response.
Ch 2 1 Chapter 2 Kinematics in One Dimension Giancoli, PHYSICS,6/E © Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle.
Chapter 2: Motion, Forces, & Newton’s Laws. Brief Overview of the Course “Point” Particles & Large Masses Translational Motion = Straight line motion.
Kinematics in One Dimension
Chapter 2 Homework #1 Questions: 2,3,4,5,6,9,16, 17 Problems: 1,2,5,6,9,8,13, 17, 20,22,23,26, 27,28 Due Sept 29 Quiz on Section 1-6 on Sept 29.
Day 3 – May 9 – WBL Chapter 2 Kinematics: Description of Motion PC141 Intersession 2013Slide 1 A bit of terminology… Kinematics (the topic of the.
 In this packet we will look at:  The meaning of acceleration  How acceleration is related to velocity and time  2 distinct types acceleration  A.
Ying Yi PhD Chapter 2 Motion in One Dimension 1 PHYS HCC.
Chapter 2: Describing Motion in 1-D. Frame of Reference Whether or not you are moving depends on your point-of-view. From inside the box car, the woman.
Scalars A scalar is anything that can be represented by a number (+ or -) and any associated units. A scalar is always written with a non-bold symbol and.
Chapter 2 Motion in One Dimension. Quantities in Motion Any motion involves three concepts Displacement Velocity Acceleration These concepts can be used.
Chapter 3 Describing Motion: Kinematics in One Dimension.
Chapter 2 Motion in One Dimension. Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension.
Chapter 2 Motion in One Dimension. Kinematics Describes motion while ignoring the external agents that might have caused or modified the motion (Dynamics.
Ch 2 Describing Motion: Kinematics in One Dimension
Motion in One Dimension
Vectors and Linear Motion
One-dimensional motion
Describing Motion: Kinematics in One Dimension
Kinematics Vectors and Motion
Kinematics Uniform Motion
One-dimensional motion
Presentation transcript:

Velocity Acceleration Motion at Constant Acceleration “Euclid taught me that without assumptions there is no proof. Therefore, in any argument, examine the assumptions.”— mathematician Eric Bell

In contrast to loose usage in “everyday life,” speed and velocity have precise definitions in physics. Average speed is defined by Average velocity is defined by Do you see the difference? (average speed) = (distance traveled along a path during elapsed time)/(elapsed time). (average velocity) = (displacement during elapsed time)/(elapsed time). 2.2 Average Velocity

A runner who travels once around an oval 400 meter track in one minute has run with an average speed S avg = 400 m / 60 s = 6.7 m/s. The runner’s average velocity is V avg = 0 m / 60 s = 0 m/s. This example makes average velocity look like a silly thing to calculate, but we will find that velocity is generally much more useful than speed.

Mathematically, The bar above the v means “average.” The subscript “x” on the v is very important. It reminds us of the direction we have chosen to be positive. It also reminds us that velocity is a vector quantity. Average velocity may also be written as v avg,x.

A note on notation and vector components: Giancoli follows the usual Physics convention for 1-dimensional kinematics and writes v for velocity. When he goes to 2 dimensions, he uses subscripts x and y, e.g., v x and v y, to denote the x- and y-components of velocity. The neglect of the subscript for one dimension is potentially confusing. Velocity is a vector and has both magnitude and direction. By convention, a “regular” (not bold, no arrow above) symbol stands for a scalar.

Sometimes physicists use “v” to mean “the magnitude of the velocity vector. Sometimes they use it to mean “the velocity vector in one dimension.” Two different things! You would think physicists would be more careful to say precisely what they mean. Remember: v x has both a numerical value and a sign “buried” in it. The sign tells whether v x is directed along the +x or –x direction. You would think physicists would be more careful to say precisely what they mean. But we physicists tend to think alike, and take shortcuts that we believe everybody should understand. This may seem trivial now, but more complex problems will demand correctness in all details.

Instantaneous velocity is defined as the average velocity over an infinitesimal (very small) time interval: If you have taken calculus, you can see that the instantaneous velocity is just the derivative of position with respect to time. (Don’t worry, you don’t need to know that for this class.) The OSE sheet contains the 3-dimensional version: Remember, this component form of the OSE can be used as an OSE. 2.3 Instantaneous Velocity

Speed and velocity (again). Instantaneous speed is just the magnitude of the instantaneous velocity vector: We’ll be doing plenty of problems involving velocity soon enough, so I’ll hold off on examples for a bit.

Average acceleration is defined by (average acceleration) = (change of velocity) /(elapsed time). Mathematically, As you might suspect, instantaneous acceleration is defined by 2.4 Acceleration

Conceptual example 2-4. (a) If the velocity of an object is zero does it mean that the acceleration is zero? (b) If the acceleration is zero, does it mean that the velocity is zero? Give examples. Well…? Negative acceleration means the direction of the acceleration vector is in the negative x-direction.* A car could have negative acceleration and be speeding up. Deceleration means the object is slowing down, but does not necessarily mean that acceleration is negative. *In one dimension, axis called “x-axis.” Negative acceleration means the direction of the acceleration vector is in the negative x-direction.* Well…? You don’t expect me to give all the answers, do you? Deceleration means the object is slowing down, but does not necessarily mean that acceleration is negative. It means that the magnitude of the acceleration is decreasing. Again—sign depends on your choice of axes.

A “better” way to think of acceleration: An acceleration gives rise to a change in velocity. We’ll be doing plenty of problems involving acceleration soon enough, so I’ll again hold off on examples for a bit.

If acceleration is constant, the instantaneous and average accelerations are equal, and motion is said to be “uniformly accelerated motion.” It is not too difficult to start with our definitions of velocity and acceleration, and derive the following four equations, which are valid if acceleration is constant: The three boxed equations are “official” and are on your OSE sheet. The other comes from the definition of “average.” 2.5 Motion at Constant Acceleration

The equations describe the motion of an object which has an acceleration a x. These equations are only valid if acceleration is constant! Do not use them unless you know that is true! By “official” I mean the equations on the previous slide are the starting point for all your kinematics in one dimension problems! You can define any convenient coordinate axes, and you may also use “y” (or some other symbol) instead of “x.”

velocity when position is x 0 velocity when position is x acceleration of object between x and x 0 (must be constant) It might be “better” to write but none of the major textbooks write it that way. A note on notation:

“Should I write or I’ll accept either. But v 0x is better than v x0 because the subscript “x” identifies the symbol as being the x-component of whatever comes before, and by v 0x we actually mean the x component of (v 0 ). It would be technically more correct for me to write but that’s lots of extra parentheses to keep track of.

Example: starting from a speed v 1 at the beginning of a freeway entrance ramp, you want to enter the freeway at a speed v 2 at the end of the ramp, which has length L. Calculate the required acceleration. Assume a is constant. If time permits, I’ll work this on the blackboard in class. The following slides show the solution in all its detail. Litany for Kinematics, step 1: draw a basic representative sketch of the physical situation. Step 2: draw and label vectors for the relevant dynamical quantities. Step 3: draw axes, indicating origin & + direction.

Step 4: indicate and label initial and final positions. Step 5: OSE. Step 6: Replace generics with specifics. Step 7: Solve algebraically. Step 8: Draw a box around your final answer. Example: starting from a speed v 1 at the beginning of a freeway entrance ramp, you want to enter the freeway at a speed v 2 at the end of the ramp, which has length L. Calculate the required acceleration. Assume a is constant.

Litany for Kinematics, step 1: draw a basic representative sketch of the physical situation. v 1 v 2 L end of ramp

Step 2: draw and label vectors for the relevant dynamical quantities. The labels v 1 and v 2 below the “car” didn’t help. Also are misleading (vectors?). Wasted time! Dump them. v1v1 v2v2 If you are given that v 1 = 0, I do not require that you draw the arrow if you write v 1 = 0 next to the object. You can indicate numerical values of vector magnitudes by the arrow, or put them off to the side. If a value is unknown, you should indicate that with a “?” L v1v1 v2v2 a = ? There’s a reason for not “attaching” the v’s to the object.

Step 3: draw axes, indicating origin & + direction. L v1v1 v2v2 a = ? x Actually, there is nothing in the problem statement that “demands” v 1 pointing to the right. (I don’t see how you could “enter” by going away from the entrance, so it makes sense for v 2 to be to the right.) If you have information that tells you the direction of a vector, use it. Otherwise, assume a reasonable direction. If your assumed direction is wrong, your math will tell you.

Step 4: indicate and label initial and final positions. What about time? No information given about time, maybe we don’t need it; we can always add it later if necessary. It would be a good idea to label the positions with x 1 =0 and x 2 =L. You don’t need to if the diagram provides the information. (I wrote x 1 =0 because it might not be clear the vertical line there indicates x=0.) L v1v1 v2v2 a = ? x x 1 =0x2x2

Step 5: OSE. Think… “I am given initial and final velocities and a total distance; I want acceleration.” “Aha!” It never hurts to give me a clue that this is your intended OSE by labeling it as such! In fact, on exams I will usually require that you do so. x 1 =0x2x2 L v1v1 v2v2 a = ? x

Step 6: Replace generics with specifics. You are not allowed to alter this equation! The diagram says a x is directed to the right, which is why we put a in with a + sign here. The problem is worded so that a x could be directed to the left. Our final answer would tell us if we “guessed” the direction wrong. ++(v 2 2 )+(v 2 2 ) =+(v 2 2 ) = ++(v 2 2 ) = +(v 1 2 )+(v 2 2 ) = +(v 1 2 ) ++(v 2 2 ) = +(v 1 2 ) + 2+(v 2 2 ) = +(v 1 2 ) + 2(+a)+(v 2 2 ) = +(v 1 2 ) + 2(+a) (+(v 2 2 ) = +(v 1 2 ) + 2(+a) (++(v 2 2 ) = +(v 1 2 ) + 2(+a) (+(+L)+(v 2 2 ) = +(v 1 2 ) + 2(+a) (+(+L) -+(v 2 2 ) = +(v 1 2 ) + 2(+a) (+(+L) - (0)+(v 2 2 ) = +(v 1 2 ) + 2(+a) (+(+L) - (0) ) x 1 =0x2x2 L v1v1 v2v2 a = ? x

Step 7: Solve algebraically. I don’t need all the extra ()’s any more. Do one plodding step at a time! (I didn’t!) I assumed that acceleration is to the right.I assumed that acceleration is to the right. Caution! I assumed that acceleration is to the right. Caution! I could give you a problem in which the car slows down. I assumed that acceleration is to the right. Caution! I could give you a problem in which the car slows down. We’ll soon learn techniques for handling this. x 1 =0x2x2 L v1v1 v2v2 a = ? x

Step 8: Draw a box around your final answer. “I want numbers! Give me numbers to plug in!” “I want numbers! Give me numbers to plug in!” No you don’t. “I want numbers! Give me numbers to plug in!” No you don’t. Really. Done! x 1 =0x2x2 L v1v1 v2v2 a = ? x

Because you really think you want numbers, I’ll give you some. Starting from a speed of 10 mph at the beginning of a freeway entrance ramp, you want to enter the freeway at a speed of 65 mph at the end of the ramp, which has length of 400 yards. Calculate the required acceleration. Assume constant acceleration. Do you have any clue if this is correct or not? I inverted these when I first did the calculation, but the units showed me my error. Do you have any clue if this is correct or not? I think the ramp length is quite a bit longer than is typical in “reality.”

“Euclid taught me that without assumptions there is no proof. Therefore, in any argument, examine the assumptions.”— mathematician Eric Bell Do your remember the quote at the start of this lecture about examining assumptions? In the solution in these notes, I assumed v 1x, v 2x and a x are directed towards positive x. I also assumed a x is constant. If you don’t know the direction a vector component points, leave it in the form v x, a x, etc. in your solution and do not include a sign for assumed direction.

Example: Use the data from the previous example to show that it took 21.8 seconds to accelerate from 10 to 65 mph. You learn relatively little just by watching me work problems. If you wished, you could work the problem and see if my calculation of time is correct.