Chapter 2 continued 2:1 phyllosilicates
Isomorphous Substitution Substitution, during formation, of one ion for another of similar SIZE (but not necessarily the same charge) in an ionic solid without changing the structure (shape, morphology) of the crystal. Isomorphic = “same shape”
2 Tetrahedral sheets + 1 octahedral sheet http://pubpages.unh.edu/~harter/crystal.htm#2:1%20MINERALS
Form 2:1 minerals
Oreo cookies serve as models for layer minerals (phyllosilicates) One Oreo can be a mica or smectite-type mineral First proposed by Jerry Irvin at UCR
Two Oreo cookies can be split and reconstructed to form a 1:1 mineral Kaolinite Two Oreo cookies can be split and reconstructed to form a 1:1 mineral
Pyrophyllite (no sub’n) [Si8]IV[Al4]VIO20(OH)4 (8 x Si4+) + (4 x Al3+) = 44+ (20 x O2-) +(4 x OH1-) = 44- 44+ + 44- = 0 Net charge = 0 Muscovite (Tet’l sub’n) K2[(Si6, Al2)]IV[Al4]VIO20(OH)4 (6 x Si4+) + (6 x Al3+) = 42+ (20 x O2-) +(4 x OH1-) = 44- 42+ + 44- = -2 Net charge = -2 Satisfied by 2 x K1+ ions that are “fixed” or tightly held in interlayer
Muscovite (mica) Pyrophyllite http://www.a-m.de/images/pyrophyllit_01gre.jpg
www.geoclassroom.com/mineralogy/silicatelayer.gif
High-charge 2:1 minerals Mica x = 2 Dioctahedral: Muscovite Kx[Si,Al]8 [Al4]O20(OH, F)4 Paragonite Nax[Si,Al]8 [Al4]O20(OH, F)4 Trioctahedral: Biotite Kx[Si,Al]8 [Mg, Fe, Al]6O20(OH, F)4 Phlogopite Kx[Si,Al]8 [Mg6]O20(OH, F)4 Lepidolite Kx[Si,Al]8 [Li,Al]6O20(OH, F)4
Mica hand samples
High-charge 2:1 mineral properties Source of K+ in soils as they weather Non-expansive, non-sticky, non-plastic S.A. = 70-120 m2/g (mostly external) CEC = 10 - 40 cmol/kg c-spacing = 1.0 nm Interlayer held tightly together by K+ fit in ditrigonal cavities of tetrahedral sheet
Mica structure (100) Plane) (001) Plane http://www.geoclassroom.com/mineralogy/phyllosilicates.html
http://pubs.usgs.gov/of/2001/of01-041/htmldocs/images/illstruc.jpg
2:1 minerals with low layer charge (x) Smectites x = 0.4 – 1.2 Dioctahedral Montmorillonite Mx,H2O [Si8][Al,Mg]4O20(OH)4 Beidellite Mx,H2O [Si,Al]8[Al4]O20(OH)4 Nontronite Mx,H2O [Si,Al]8[Fe+3]4O20(OH)4 Trioctahedral Saponite Mx,H2O [Si,Al]8[Mg6]O20(OH)4 Hectorite Mx,H2O [Si8][Mg,Li]6O20(OH)4
http://pubs.usgs.gov/of/2001/of01-041/htmldocs/images/monstru.jpg
Low-charge smectite properties Shrink-swell characteristics Plastic High S.A. (both external + internal or interlayer area) = 600-800 m2/g High CEC; 80-150 cmol/kg Expansive - c-spacing variable with cation saturation and heat (1.0 –2.0 nm) Very small particles (fine clay) Flakey shape (e.g., corn flakes)
Authigenic smectite (montmorillonite) overgrown on pore spaces and authigenicly-overgrown quartz grains in a sandstone. http://webmineral.com/specimens/picshow.php?id=1285
Quartz. This SEM (scanning electron microscope) photograph shows authigenic quartz crystals and smectite clay coating another mineral grain. http://www.glossary.oilfield.slb.com/DisplayImage.cfm?ID=163
Montmorillonite www-esd.lbl.gov/sposito/ figure created by Dr. Sung-Ho Park
surface cracks in Vertisol (Utah) soils.ag.uidaho.edu/soilorders/i/Vert_07b.jpg
Damage to buildings on Vertisols soils.ag.uidaho.edu/soilorders/vertisols_07.htm