Econometric Analysis of Panel Data

Slides:



Advertisements
Similar presentations
Dynamic Panel Data: Challenges and Estimation Amine Ouazad Ass. Prof. of Economics.
Advertisements

Econometric Analysis of Panel Data
Generalized Method of Moments: Introduction
Econometrics I Professor William Greene Stern School of Business
Discrete Choice Modeling William Greene Stern School of Business New York University Lab Sessions.
Discrete Choice Modeling
Empirical Methods for Microeconomic Applications University of Lugano, Switzerland May 27-31, 2013 William Greene Department of Economics Stern School.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Part 11: Asymptotic Distribution Theory 11-1/72 Econometrics I Professor William Greene Stern School of Business Department of Economics.
Part 17: Nonlinear Regression 17-1/26 Econometrics I Professor William Greene Stern School of Business Department of Economics.
Part 12: Asymptotics for the Regression Model 12-1/39 Econometrics I Professor William Greene Stern School of Business Department of Economics.
Econometric Analysis of Panel Data Random Regressors –Pooled (Constant Effects) Model Instrumental Variables –Fixed Effects Model –Random Effects Model.
Part 13: Endogeneity 13-1/62 Econometrics I Professor William Greene Stern School of Business Department of Economics.
[Part 1] 1/15 Discrete Choice Modeling Econometric Methodology Discrete Choice Modeling William Greene Stern School of Business New York University 0Introduction.
Part 12: Random Parameters [ 1/46] Econometric Analysis of Panel Data William Greene Department of Economics Stern School of Business.
Econometric Analysis of Panel Data Dynamic Panel Data Analysis –First Difference Model –Instrumental Variables Method –Generalized Method of Moments –Arellano-Bond-Bover.
Econometric Analysis of Panel Data Instrumental Variables in Panel Data –Assumptions of Instrumental Variables –Fixed Effects Model –Random Effects Model.
Econometric Analysis of Panel Data Lagged Dependent Variables –Pooled (Constant Effects) Model –Fixed Effects Model –Random Effects Model –First Difference.
Econometric Analysis Using Stata
Part 7: Regression Extensions [ 1/59] Econometric Analysis of Panel Data William Greene Department of Economics Stern School of Business.
Part 9: GMM Estimation [ 1/57] Econometric Analysis of Panel Data William Greene Department of Economics Stern School of Business.
Part 2: Projection and Regression 2-1/45 Econometrics I Professor William Greene Stern School of Business Department of Economics.
Econometric Analysis of Panel Data Fixed Effects and Random Effects: Extensions – Time-invariant Variables – Two-way Effects – Nested Random Effects.
Part 21: Generalized Method of Moments 21-1/67 Econometrics I Professor William Greene Stern School of Business Department of Economics.
Econometric Methodology. The Sample and Measurement Population Measurement Theory Characteristics Behavior Patterns Choices.
1. Descriptive Tools, Regression, Panel Data. Model Building in Econometrics Parameterizing the model Nonparametric analysis Semiparametric analysis Parametric.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Empirical Methods for Microeconomic Applications William Greene Department of Economics Stern School of Business.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Part 5: Random Effects [ 1/54] Econometric Analysis of Panel Data William Greene Department of Economics Stern School of Business.
Topics in Microeconometrics William Greene Department of Economics Stern School of Business.
1/68: Topic 1.3 – Linear Panel Data Regression Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA William.
Discrete Choice Modeling William Greene Stern School of Business New York University.
Econometric Analysis of Panel Data
[Topic 2-Endogeneity] 1/33 Topics in Microeconometrics William Greene Department of Economics Stern School of Business.
1/69: Topic Descriptive Statistics and Linear Regression Microeconometric Modeling William Greene Stern School of Business New York University New.
Empirical Methods for Microeconomic Applications University of Lugano, Switzerland May 27-31, 2013 William Greene Department of Economics Stern School.
[Topic 1-Regression] 1/37 1. Descriptive Tools, Regression, Panel Data.
Part 4A: GMM-MDE[ 1/33] Econometric Analysis of Panel Data William Greene Department of Economics Stern School of Business.
The Instrumental Variables Estimator The instrumental variables (IV) estimator is an alternative to Ordinary Least Squares (OLS) which generates consistent.
1/26: Topic 2.2 – Nonlinear Panel Data Models Microeconometric Modeling William Greene Stern School of Business New York University New York NY USA William.
Econometric Analysis of Panel Data
William Greene Stern School of Business New York University
Econometric Analysis of Panel Data
Microeconometric Modeling
Microeconometric Modeling
Microeconometric Modeling
Migration and the Labour Market
Econometric Analysis of Panel Data
Econometrics I Professor William Greene Stern School of Business
Econometric Analysis of Panel Data
Microeconometric Modeling
Microeconometric Modeling
Econometrics Chengyuan Yin School of Mathematics.
Econometric Analysis of Panel Data
Econometrics I Professor William Greene Stern School of Business
Econometrics I Professor William Greene Stern School of Business
Econometrics I Professor William Greene Stern School of Business
Microeconometric Modeling
Econometrics I Professor William Greene Stern School of Business
Econometric Analysis of Panel Data
Microeconometric Modeling
Econometrics I Professor William Greene Stern School of Business
Econometrics I Professor William Greene Stern School of Business
Econometric Analysis of Panel Data
Empirical Methods for Microeconomic Applications University of Lugano, Switzerland May 27-31, 2019 William Greene Department of Economics Stern School.
Econometrics I Professor William Greene Stern School of Business
Microeconometric Modeling
Econometrics I Professor William Greene Stern School of Business
Econometrics I Professor William Greene Stern School of Business
Presentation transcript:

Econometric Analysis of Panel Data William Greene Department of Economics Stern School of Business

Dear Professor Greene, I have to apply multiplicative heteroscedastic models, that I studied in your book, to the analysis of trade data. Since I have not found any Matlab implementations, I am starting to write the method from scratch. I was wondering if you are aware of reliable implementations in Matlab or any other language, which I can use as a reference. 

a “multi-level” modelling feature along the following lines a “multi-level” modelling feature along the following lines? My data has a “two level” hierarchical structure: I'd like to perform an ordered probit analysis such that we allow for random effects pertaining to individuals and the organisations they work for.

----------------------------------------------------------------------------- Random Coefficients  OrdProbs Model Dependent variable                 HSAT Log likelihood function     -1856.64320 Estimation based on N =    947, K =  14 Inf.Cr.AIC  =   3741.3 AIC/N =    3.951 Unbalanced panel has    250 individuals Ordered probit (normal) model LHS variable = values 0,1,...,10 Simulation based on    200 Halton draws --------+--------------------------------------------------------------------         |                  Standard            Prob.      95% Confidence     HSAT|  Coefficient       Error       z    |z|>Z*         Interval         |Nonrandom parameters Constant|    3.94945***      .24610    16.05  .0000     3.46711   4.43179      AGE|    -.04201***      .00330   -12.72  .0000     -.04848   -.03553     EDUC|     .05835***      .01346     4.33  .0000      .03196    .08473         |Scale parameters for dists. of random parameters Constant|    1.06631***      .03868    27.57  .0000      .99050   1.14213         |Standard Deviations of Random Effects R.E.(01)|     .05759*        .03372     1.71  .0877     -.00851    .12369         |Threshold parameters for probabilities   Mu(01)|     .13522**       .05335     2.53  .0113      .03065    .23979   ... Mu(09)|    4.66195***      .11893    39.20  .0000     4.42884   4.89506

Agenda Single equation instrumental variable estimation Panel data Exogeneity Instrumental Variable (IV) Estimation Two Stage Least Squares (2SLS) Generalized Method of Moments (GMM) Panel data Fixed effects Hausman and Taylor’s formulation Application Arellano/Bond/Bover framework

Structure and Regression

Exogeneity

An Experimental Treatment Effect

Instrumental Variables Instrumental variable associated with changes in x, not with ε dy/dx = β dx/dx + dε /dx = β + dε /dx. Second term is not 0. dy/dz = β dx/dz + dε /dz. The second term is 0. β =cov(y,z)/cov(x,z) This is the “IV estimator” Example: Corporate earnings in year t Earnings(t) = β R&D(t) + ε(t) R&D(t) responds directly to Earnings(t) thus ε(t) A likely valid instrumental variable would be R&D(t-1) which probably does not respond to current year shocks to earnings.

Least Squares

The IV Estimator

A Moment Based Estimator

Cornwell and Rupert Data Cornwell and Rupert Returns to Schooling Data, 595 Individuals, 7 Years Variables in the file are EXP = work experience, EXPSQ = EXP2 WKS = weeks worked OCC = occupation, 1 if blue collar, IND = 1 if manufacturing industry SOUTH = 1 if resides in south SMSA = 1 if resides in a city (SMSA) MS = 1 if married FEM = 1 if female UNION = 1 if wage set by unioin contract ED = years of education LWAGE = log of wage = dependent variable in regressions These data were analyzed in Cornwell, C. and Rupert, P., "Efficient Estimation with Panel Data: An Empirical Comparison of Instrumental Variable Estimators," Journal of Applied Econometrics, 3, 1988, pp. 149-155.  See Baltagi, page 122 for further analysis.  The data were downloaded from the website for Baltagi's text.

Wage Equation with Endogenous Weeks logWage=β1+ β2 Exp + β3 ExpSq + β4OCC + β5 South + β6 SMSA + β7 WKS + ε Weeks worked is believed to be endogenous in this equation. We use the Marital Status dummy variable MS as an exogenous variable. Wooldridge Condition (5.3) Cov[MS, ε] = 0 is assumed. Auxiliary regression: For MS to be a ‘valid’ instrumental variable, In the regression of WKS on [1,EXP,EXPSQ,OCC,South,SMSA,MS, ] MS significantly “explains” WKS. A projection interpretation: In the projection XitK =θ1 x1it + θ2 x2it + … + θK-1 xK-1,it + θK zit , θK ≠ 0. (One normally doesn’t “check” the variables in this fashion.

Auxiliary Projection +----------------------------------------------------+ | Ordinary least squares regression | | LHS=WKS Mean = 46.81152 | +---------+--------------+----------------+--------+---------+----------+ |Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Mean of X| Constant 45.4842872 .36908158 123.236 .0000 EXP .05354484 .03139904 1.705 .0881 19.8537815 EXPSQ -.00169664 .00069138 -2.454 .0141 514.405042 OCC .01294854 .16266435 .080 .9366 .51116447 SOUTH .38537223 .17645815 2.184 .0290 .29027611 SMSA .36777247 .17284574 2.128 .0334 .65378151 MS .95530115 .20846241 4.583 .0000 .81440576

Application: IV for WKS in Rupert +----------------------------------------------------+ | Ordinary least squares regression | | Residuals Sum of squares = 678.5643 | | Fit R-squared = .2349075 | | Adjusted R-squared = .2338035 | +---------+--------------+----------------+--------+---------+ |Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Constant 6.07199231 .06252087 97.119 .0000 EXP .04177020 .00247262 16.893 .0000 EXPSQ -.00073626 .546183D-04 -13.480 .0000 OCC -.27443035 .01285266 -21.352 .0000 SOUTH -.14260124 .01394215 -10.228 .0000 SMSA .13383636 .01358872 9.849 .0000 WKS .00529710 .00122315 4.331 .0000

Application: IV for wks in Rupert +----------------------------------------------------+ | LHS=LWAGE Mean = 6.676346 | | Standard deviation = .4615122 | | Residuals Sum of squares = 13853.55 | | Standard error of e = 1.825317 | | Fit R-squared = -14.64641 | | Adjusted R-squared = -14.66899 | | Not using OLS or no constant. Rsqd & F may be < 0. | +---------+--------------+----------------+--------+---------+ |Variable | Coefficient | Standard Error |b/St.Er.|P[|Z|>z] | Constant -9.97734299 3.59921463 -2.772 .0056 EXP .01833440 .01233989 1.486 .1373 EXPSQ -.799491D-04 .00028711 -.278 .7807 OCC -.28885529 .05816301 -4.966 .0000 SOUTH -.26279891 .06848831 -3.837 .0001 SMSA .03616514 .06516665 .555 .5789 WKS .35314170 .07796292 4.530 .0000 OLS------------------------------------------------------ WKS .00529710 .00122315 4.331 .0000

Generalizing the IV Estimator-1

Generalizing the IV Estimator - 2

Generalizing the IV Estimator

The Best Set of Instruments

Two Stage Least Squares

2SLS Estimator

2SLS Algebra

A General Result for IV We defined a class of IV estimators by the set of variables The minimum variance (most efficient) member in this class is 2SLS (Brundy and Jorgenson(1971)) (rediscovered JW, 2000, p. 96-97)

GMM Estimation – Orthogonality Conditions

GMM Estimation - 1

GMM Estimation - 2

IV Estimation

An Optimal Weighting Matrix

The GMM Estimator

GMM Estimation

Application - GMM NAMELIST ; x = one,exp,expsq,occ,south,smsa,wks$ NAMELIST ; z = one,exp,expsq,occ,south,smsa,ms,union,ed$ 2SLS ; lhs = lwage ; RHS = X ; INST = Z $ NLSQ ; fcn = lwage-b1'x ; labels = b1,b2,b3,b4,b5,b6,b7 ; start = b ; inst = Z ; pds = 0$

Application - 2SLS

GMM Estimates

2SLS GMM with Heteroscedasticity

Testing the Overidentifying Restrictions

Inference About the Parameters

Specification Test Based on the Criterion

Extending the Form of the GMM Estimator to Nonlinear Models

A Nonlinear Conditional Mean

Nonlinear Regression/GMM NAMELIST ; x = one,exp,expsq,occ,south,smsa,wks$ NAMELIST ; z = one,exp,expsq,occ,south,smsa,ms,union,ed$ ? Get initial values to use for optimal weighting matrix NLSQ ; lhs = lwage ; fcn=exp(b1'x) ; inst = z ; labels=b1,b2,b3,b4,b5,b6,b7 ; start=7_0$ ? GMM using previous estimates to compute weighting matrix NLSQ (GMM) ; fcn = lwage-exp(b1'x) ; inst = Z ; labels = b1,b2,b3,b4,b5,b6,b7 ; start = b ; pds = 0 $ (Means use White style estimator)

Nonlinear Wage Equation Estimates NLSQ Initial Values

Nonlinear Wage Equation Estimates 2nd Step GMM

IV for Panel Data