Atmospheric Correction Algorithm for the GOCI Jae Hyun Ahn* Joo-Hyung Ryu* Young Jae Park* Yu-Hwan Ahn* Im Sang Oh** Korea Ocean Research & Development Institute Seoul National University
I n d e x _ 1.Introduction _ -Atmospheric Correction -Atmospheric Algorithms of the GOCI > Standard NASA Algorithm > SGCA > SSMM 2.Process of Atmospheric Correction _ -Standard NASA Algorithm -SGCA -SSMM 3.Result & Validation _ -Result -Validation 4.Conclusion _ Ocean Color
1. Introduction _ Atmospheric Correction Atmospheric Correction Atmospheric Correction L TOA (555nm)Rrs(555nm) Atmospheric Correction Atmospheric Correction *L : radiance *Rrs : remote sensing reflectance
1. Introduction _ Atmospheric Correction Clear water / thin aerosol case *Lr: Radiance of molecular scattering La : Radiance of aerosol scattring *Lw : Radiance of Ocean Case 1 water : L W is 1~7% of L TOA
1. Introduction _ Atmospheric Correction Issue : GOCI has longer optical path than the polar orbit satellite (MODIS : 0˚ < Satellite zenith angle < 40˚) 26˚ < Satellite zenith angle < 55˚ Observation area Earth GOCI equator
1.Introduction _ 3 atmospheric Algorithms of the GOCI Standard NASA algorithm A classical standard atmospheric correction algorithm Developed by M.Wang & H.R.Gordon Aerosol selection, turbid-water iterative method, diffuse transmittance models are updated by J.H.Ahn SSMM (Spectral Shape Matching Method) Developed by Y.H.Ahn & P.Shanmugam Using reference site Aerosol models updated by J.H.Ahn SGCA (Sun-Glint Correction Algorithm) Developed by HYGEOS Removing sun-glint & atmospheric signal Polynomial fitting algorithm (ocean color & atmospheric model)
2. Process of Atmospheric Correction _ Geometric Corrected TOA Radiance Image L TOA (λ) Geometric Corrected TOA Radiance Image L TOA (λ) Raw Image Reflectance of TOA Image ρ(λ)=ρ‘ (λ) + ρ R (λ) Reflectance of TOA Image ρ(λ)=ρ‘ (λ) + ρ R (λ) Reflectance of Ocean + Aerosol Image ρ‘ (λ) = T d (λ)ρ W (λ) + ρ A (λ) + ρ RA (λ) Reflectance of Ocean + Aerosol Image ρ‘ (λ) = T d (λ)ρ W (λ) + ρ A (λ) + ρ RA (λ) Reflectance of Ocean Image ρ W (λ) Reflectance of Ocean Image ρ W (λ) Level 2 Product Chl, SS, CDOM, Kd490, … Level 2 Product Chl, SS, CDOM, Kd490, … Radiometric Calibration & Geometric Correction Downward Solar Irradiance Normalization Longitude, Latitude, Time, SZA, VZA, AZA Remove Rayleigh & Sun-glint Reflectance & Mask Radiative Transfer Equation, Cox&Munk Model Remove Aerosol Reflectance Radiative Transfer Equation, Aerosol Model Underwater Algorithm Reflectance of Ocean Image Rrs(λ) Reflectance of Ocean Image Rrs(λ) Atmospheric Correction Standard NASA Algorithm SSMMSGCA
2. Process of Atmospheric Correction _ Step 1. Downward Solar Irradiance Normalization Downward Solar Irradiance Normalization L TOA (λ) cos(θ S ) * θ S : solar zenith angle F0(λ) : Extraterrestrial spectral irradiance ρ TOA (λ)
Process of Atmospheric Correction _ - Slot Correction of Solar Irradiance Normalization cos(θ S ) Step 1. Downward Solar Irradiance Normalization
2. Process of Atmospheric Correction _ Step 2. Remove Rayleigh Signal ρ TOA (443nm)ρ R (443nm) ρ‘ (443nm)
2. Process of Atmospheric Correction _ - Remove direct & sun-glinted Rayleigh reflectance Computed by radiative transfer equation Integrate with GOCI bands’ spectral response Using pre-computed LUT Wind speed : 0~16 m/s Step 3. Remove Rayleigh & Sun-glint Reflectance Scattering off a rough sea surface Molecular scattering
M 2. Process of Atmospheric Correction _ Step 3. Land & Cloud Masking - Using threshold of Band8 (865nm) - Masking 5x5 around the above threshold pixel MMM MMMMM MMMMM MMMMM MMM
2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal ρ‘ (555nm)ρ A (555nm)+ρ RA (555nm)ρ W (555nm)
2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal - Standard NASA algorithm Basic Assumption : ρ W (NIR) = 0 (GOCI’s NIR Band : 745nm, 865nm) Atmospheric Correction Select 2 Aerosol Type Multiple Scattering to Single Scattering for all Aerosol Types Get Two Aerosol Models (model1/model2) ε model1 (B7, B8) < ε ave (B7, B8) < ε model2 (B7, B8) Look-up Table from RTE (6S) Calculate Multiple Scattering of Specific Aerosol type Get ε (λ, B8) for all band Calculate Single Scattering of 2 Specific Aerosol type Calculate Single Scattering Reflectance for all Band ρ as model (λ) 2 Aerosol Models sza/vza/aza ρ as model1 (λ) ρ as model2 (λ) Get ρ a (λ) + ρ ra (λ) and t(λ) of 2 models Interpolate ρ a (λ) + ρ ra (λ) and t(λ) of 2 models Calculate Rayleigh Scattering
2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal - Standard NASA algorithm Aerosol model selection (Modified) Select 2 Aerosol Type Multiple Scattering to Single Scattering for all Aerosol Types Get Two Aerosol Models (model1/model2) ε model1 (B7, B8) < ε ave (B7, B8) < ε model2 (B7, B8) Average all aerosol models’ ε(B7, B8) Select 4 aerosol models Average 4 aerosol models’ ε(B7, B8) Select 2 aerosol models Get weight of 2 aerosol models
2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal - Aerosol models Maritime (RH 50%, RH 80%, RH 99%) Urban (RH 50%, RH 80%, RH 99%) Continental (RH 50%, RH 80% RH 99%) Band 8 signal (aerosol signal) Aerosol model selection result Aerosol removed signal (pure ocean signal : ρ w (443)) East sea
2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Reflectance - SSMM (Spectral Shape Matching Method) Assumption : ρ W (NIR) = 0 (GOCI’s NIR Band : 745nm, 865nm) Assumption : ρ aerosol_model_1 (λ) + ρ aerosol_model_2 (λ) = 0 Use reference site’s spectrum shape Atmospheric Correction LUT Reflectance of Specific Aerosol type 2 Aerosol Models sza/vza/aza ρ a (λ) + ρ ra (λ) and t(λ) Calculate Rayleigh Scattering Reference site Get Aerosol reflectance Get Two Aerosol Models & mixing ratio from LUT
ρ TOA (NIR)=ρ r (NIR) + ρ a (NIR) + ρ ra (NIR) + t(NIR) ρ f (NIR) + t(NIR) ρ w (NIR) ρ r (λ) calculated by RTE ρ a (λ) + ρ ra (λ) calculated by LUT t(NIR) calculated by LUT + RTE ρ f (NIR) calculated by Cox&Munk’s Eq ρ r (λ) calculated by RTE ρ a (λ) + ρ ra (λ) calculated by LUT t(NIR) calculated by LUT + RTE ρ f (NIR) calculated by Cox&Munk’s Eq ρ w (λ) chl, ss Atmospheric Correction Underwater Algorithm CHL, TSM ρ w (NIR) Ocean Color Model ρ w (λ), chl corrected ρ w (λ) BRDF 2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Reflectance - Iterative Method of NASA Standard Algorithm & SSMM Turbid water : ρ W (NIR) ≠0
2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal - Iterative Method of NASA Standard Algorithm & SSMM Rrs(NIR) = f/Q*b b (NIR)/(a(NIR)+b b (NIR)) - Bb(NIR) = b b w (NIR)+b b chl (NIR) + b b nc (NIR) - a(NIR) = a w (NIR)+ a chl (NIR) + a nc (NIR ρ W (865nm)
2. Process of Atmospheric Correction _ Step 4. Remove Aerosol Signal ρ‘ (λ) Td(λ) ρ W MOD (λ) + ρ A (λ)+ρ RA (λ)+ error (λ) ρ W MOD parameters (λ, chl, Bb S ) ρ Aerosol MOD parameters (C 0, C 1, C 2 ) Min-error (λ) Final value (chl, C0, C1, C2) ρ W (λ) - SGCA (Sun-glint Correction Algorithm) Basic Assumption : ρ W MOD (λ) is valid Polynomial fitting : ρ W MOD (λ) & ρ Aerosol MOD (λ) ρ W MOD (λ) : Using Biogenic optical model (by A.Morel) ρ Aerosol MOD (λ) : C 0 + C 1 λ -2 + C 2 λ -4
B1 2. Process of Atmospheric Correction _ Step 5. Apply Diffuse Transmittance - Extract Rayleigh diffuse transmittance Generic Rayleigh diffuse transmittance model τ r (λ) : use H.R.Gordon’s model B3B4B8 Td r cos(Ф) Model’s Td r RTE’s Td r
2. Process of Atmospheric Correction _ Step 5. Apply Diffuse Transmittance - Extract Rayleigh diffuse transmittance A simple Rayleigh diffuse transmittance model C6C6 C5C5 C4C4 C3C3 C2C2 C1C1 C0C0 412nm E E E E E E E nm E E E E E E E nm E E E E E E E nm E E E E E E E nm E E E E E E E nm E E E E E E E nm E E E E E E E nm E E E E E E E-01
2. Process of Atmospheric Correction _ Step 5. Apply Diffuse Transmittance - Get aerosol diffuse transmittance from AOT Aerosol model, single scattering reflectance, single scattering albedo, phase function Get aerosol optical thickness A simple aerosol diffuse transmittance model (Hajime Fukushima, 1998) - Using Aerosol+Rayleigh LUT (Future work) A generic data driven method
GOCI with NASA standard 2011/03/17 03:16 (UTC) 3. Result & Validation _ Result Comparison images of GOCI & MODIS (NASA Standard Algorithm) MODIS with NASA standard 2011/03/17 05:05 (UTC)
3. Result & Validation _ Result Comparison spectrums of GOCI & MODIS (with NASA Standard Algorithm) B1 : 412nm B2 : 443nm B3 : 490nm (MODIS : 488nm) B4 : 555nm (MODIS : 551nm) B5 : 660nm (MODIS : 667nm) B6 : 680nm (MODIS : 678nm) GOCI MODIS GOCI MODIS
SSMM Rrs(412nm)SSMM Rrs(443nm)SSMM Rrs(490nm)SSMM Rrs(555nm) MODIS Rrs(412nm)MODIS Rrs(443nm)MODIS Rrs(490nm)MODIS Rrs(555nm) GOCI : SSMM 2010/09/17 04:16 (UTC) MODIS : NASA Standard Algorithm 2010/09/17 04:45 (UTC) 3. Result & Validation _ Result Comparison images of SSMM & MODIS (NASA Standard Algorithm)
SSMM nLw(555nm): :16 (UTC)SGCA nLw(555nm): :16 (UTC)MODIS nLw(555nm): :25 (UTC) Comparison nLw spectrums of SSMM & SGCA & MODIS (NASA Standard Algorithm) 3. Result & Validation _ Validation SSMM SGCA NASA Standard (MODIS)
4. Conclusion _ - NASA Standard Algorithm for the GOCI - Basic schema is all implemented. - Need to improve the ocean color model - Add more good arrangement aerosol models - Need to consider the new aerosol model for the GOCI observation area - Change to the look up table based diffuse transmittance estimation - Aerosol model selection and weight method update - SSMM - Looks reasonable but needs more tuning - Better result high turbidity water and blue absorption aerosol case - Also consider about horizontal aerosol type changes - Collect more reference site - SGCA - Relatively good matching at the high optical thickness case - Improvement for turbid water - Needs more local tuning
THANK YOU