HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4 Prediction calculations……………………………………………………5 Angular distributions………………………………………………………6,7 2 vs J´ ………………….……………………………………………………… Effects of inserting beta6 into the angular distribution one-step fit function……………………………………………………11-12 Two-color exp………………………………………………………………13 Br detection…………………………………………………………………14-18 Br* detection……………………………………………………………… H detection………………………………………………………………… Updated:
…PXP ,pxp; Lay:0; Gr:1 …….XLS xlsx KER/eV I(H*+Br*) I(H*+Br) HBr + */HBr + J´=J´´= Integral values E(1)
…PXP ,pxp; Lay:1; Gr:2 I(H*+Br*)/I(H*+Br) J´ Comment; Minimum is of Interesting with respect to the comparison with the mass resolved spectra analysis. E(1)
…PXP ,pxp; Lay:2; Gr:3 I(HBr + /HBr + *)/I(H*+Br) J´ Virtually unchanged with J´(?) E(1)
I(H*+Br*) I(H*+Br) HBr + */HBr + Prediction calculations ½ <- ½ 3/2 <- 3/ v + = …PXP a,pxp; Lay:6; Gr:1; <= ……XLS xlsx, sheet: „KER I, II“ and „KER III,IV“; NB: conversion factor for KER = e-5*(pix)**2 = KER(eV) KER/eV J´= J´´= ? E(1)
…PXP a,pxp; Lay:7; Gr:11; …PXP a,pxp; Lay:8; Gr:12; E(0), H* + Br* J´=J´´= E(0), H* + Br J´=J´´= E(1)
HBr + (top peak) …PXP a,pxp; Lay:9; Gr:13; <= ……XLS xlsx, sheet: „Angle processing“ J´=J´´=
Now let´s evaluate 2 by fitting Fitting performed by Wang: H*+Br*: (files: fitting.pxp <= ….E1.pxp; system.xlsx) H*+Br:
J´ 22 I(HBr+;top peak) I(H*+Br*), I(H*+Br) E(1), VMI One-step analysis using 2 and 4 …PXP a,pxp; Lay:13; Gr:17; <= XLS pxp: sheet: „Angle fits“ E(1)
Comments: Not a significant change in 2 with J´ for H*+Br* and H* + Br Larger parallel character in H*+Br* than in H* + Br Virtually purely parallel transition for HBr + (top peak) Slight decrease in 2 with J´ for HBr + (top peak)
J´ 22 I(H*+Br*), E(1), VMI One-step analysis using 2 and 4 …PXP a,pxp; Lay:13; Gr:17; <= XLS pxp: sheet: „Angle fits“ E(1) Solid line obtained by fitting b2 and b4 only Broken line obtained by fitnning b2,b4 and b6 No significant change
E(1), H*+Br* J´startendchisqprogrADeltaAbeta2Deltab2beta4Delta b4Beta6Delta B6Gr:IGOR filewxwy 03330, VMI1stepC0,422330,002471,48910,0166-0,347910,01710, ,021518fittingforV , VMI1stepC0,600170,001461,09870, ,571730,00720, , fittingforV , VMI1stepC0,582090,007571,12620, ,475290,008580,043290,010720fittingforV , VMI1stepC0,467350,00141,19680,0079-0,419090,008780, fittingforV , VMI1stepC0,55340,002051,1850, ,428480,01080, ,013622fittingforV , VMI1stepC0,512610,001861,2770, ,384270,01060, ,013423fittingforV , VMI1stepC0,505390,0021,16620,0103-0,403030,0116-0, ,014524fittingforV8787 J´startendchisqprogrADeltaAbeta2Deltab2beta4Delta b4Gr:IGOR filewywx 03330, VMI1stepB0,422260,002431,48860,0163-0,347460,016818fitting , VMI1stepB0,599580,002411,09570,0103-0,569380,011919fitting , VMI1stepB0,581690,002111,12410, ,473610,010720fitting , VMI1stepB0,466880,002061,19380,0116-0,416530,01321fitting , VMI1stepB0,553390,002011,18490, ,428430,010622fitting , VMI1stepB0,512830,001961,27820,0103-0,385380,011223fitting , VMI1stepB0,505440,001961,16650,0102-0,403270,011424fitting877 Adding beta6 has very little effect on beta2 and beta4 ….system.vhw-aka xlsx <= from Wang
Two-color experiments:
Two-color experiments Br detection:
Two color Br detection: E(1) pix …PXP b.pxp; Lay:7, Gr:39 J´=J´´=
Two color, Br detection: E(1) KER(total) eV …PXP b.pxp; Lay:10, Gr:42 J´=J´´=
Br peak= „The 1hv peak“ J´=J´´= …PXP b.pxp; Lay:8, Gr:40 Two color Br detection: E(1)
22 Br peak= „The 1hv peak“ E(1), two color, Br detection One-step analysis using 2 and 4 J´ …PXP b.pxp; Lay:9, Gr:41 Two color Br-detection:
Two-color experiments Br* detection:
J´=1 J´=2 J´=3
J´=J´´= Two color, Br* detection (exp: ): E(1) …PXP b.pxp; Lay:11, Gr:46 1hv 2hv
…PXP b.pxp; Lay:12, Gr:48 …PXP b.pxp; Lay:13, Gr:49 Two color, Br* detection (exp: ): E(1) 1hv J´=J´´= J´=J´´= hv NO bgr correction
Two color, Br* detection (exp: ): E(1) 1hv J´ …PXP b.pxp; Lay:14, Gr:50 2hv NO bgr correction Too high negative value ERGO: bgr needs to be considered
…PXP b.pxp; Lay:13, Gr:49 Two color, Br* detection (exp: ): E(1) J´=J´´= hv NO bgr correction J´=1 J´=2
…PXP b.pxp; Lay:13, Gr:49 Two color, Br* detection (exp: ): E(1) J´=J´´= hv NO bgr correction J´=3
Two color, Br* detection (exp: ): E(1) …PXP bb.pxp; Lay:13, Gr:49 1st elimination2nd elimination
1st elimination 2nd elimination Two color, Br* detection (exp: ): E(1) …PXP bb.pxp; Lay:14, Gr:50 2hv 1hv
Two-color experiments H detection:
E(1) Two color exp. H-detection: H detection, one color, nm (H->->H* resonance) H detection, one color, nm (J´´=0->->J´=0 resonance: cm-1) Two-color, 1) nm (HBr resonance excitation) 2) nm H resonance excitation, …PXP c.pxp; Lay:0, Gr:14 KER(total) eV
E(1) Two color exp., H-detection: One color, H detection, nm (J´´=0->->J´=0 resonance: cm-1) Two-color, 1) nm (HBr resonance excitation) 2) nm H resonance excitation, Two color – one color …PXP c.pxp; Lay:1, Gr:15 KER(total) eV
E(1) Two color exp., H-detection: …PXP c.pxp; Lay:1, Gr:15; ….XLS a.xlsx; sheet: KERa,hv,Br (prediction calc.) H detection, one color, nm (H->->H* resonance) Two color – one color Prediction calculations J´=0 J´=0-6 KER(total) eV
E(1) Two color exp., H-detection: subtraction attempt(?????): Two color – one color H detection, one color, nm (H->->H* resonance) …PXP c.pxp; Lay:3, Gr:17; ….XLS a.xlsx; sheet: KERa,hv,Br (prediction calc.) Difference spectrum after scaling the „subspectra „below. Could the difference spectrum be a sum of two contributions? -One for dissociation of HBr* -One for dissociation of HBr+ KER(total) eV
Now perform prediction calculation for KER(H) for HBr+ -> H + Br+
E(1) Two color exp., H-detection: Two color – one color H detection, one color, nm (H->->H* resonance) …PXP c.pxp; Lay:3, Gr:17; ….XLS b.xlsx; sheet: KER,I,II(prediction calc.) Difference spectrum after scaling the „subspectra „below. KER(total) eV V+= Prediction calculation for H + Br+ formation for hv + HBr+(v+) -> H+ + Br vs. v+, J´=0