HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4 Prediction calculations……………………………………………………5.

Slides:



Advertisements
Similar presentations
I 2 fs REMPI 1) Energetics / excitation calculations....slide 2 2) Absorption spectrum slides 3-6 3)REMPI spectrum slide.
Advertisements

HCl Deperturbations E1, V14, V15
SCH-tBu; working procedure; update:
HCl,  =0, H 3 7Cl and H35Cl analysis. agust,www,.....Sept10/PPT aak.ppt agust,heima,...Sept10/XLS ak.xls agust,heima,...Sept10/Look for J ak.pxp.
HCl, dep. Calc. E0,V10,V11
Comparison of E(1), V(m+8), H(0) and V(m+7) VMI data: 1 color exp: KER spectra, 1color exp.……………………..…………..2-5 Beta2 vs J´,1 color exp.…………………………………….6-10.
Update on a 0 (980) P.Gauzzi. 2 Main problem From event counting: Br(  0  ) = (6.70  0.26)  with  Br(  0  ) = (7.22  0.52)  10.
Applications of photoelectron velocity map imaging at high resolution or Photoionization dynamics of NH 3 (B 1 E  ) Katharine L. Reid (Paul Hockett, Mick.
Neutrinoless double beta decay and Lepton Flavor Violation Or, in other words, how the study of LFV can help us to decide what mechanism is responsible.
What is the charmed analog of  (1405)? Kiyoshi Tanida (Seoul National University) Aug. 23, 2011 APFB2011, Seoul.
K*(892) Resonance Production in Au+Au and Cu+Cu Collisions at  s NN = 200 GeV & 62.4 GeV Motivation Analysis and Results Summary 1 Sadhana Dash Institute.
CH2Br2: 1) Absorption 2) REMPI scans: overview (slides 12-15) 3) C+ REMPI vs absorption spectrum agust,www,....ch2br2/PPT ak.ppt agust,heima,...CH2Br2/PXP ak.pxp.
Inclusive  Production at Y(1S) Sheldon Stone Jianchun Wang Syracuse University CLEO Meeting 09/13/02.
1) HBr 1D (2+n)REMPI spectra simulations 2) Energy level shifts and intensity ratios for the F(v´=1) state agust,www,....Jan11/PPT ak.ppt agust,heima,....Jan11/XLS ak.xls.
cm CH 3 Br 10k 40k 70k CH 3 Br* C*( 1 D 2 )+H 2 +HBr C**( 1 D 2 )+H 2 +HBr J’’ k 150k C + +H 2 +HBr+e.
II. Multi- photon excitation / ionization processes
Spectroscopy Molecules move Movement can be monitored with electromagnetic radiation, e.g. light.
HBr, F 1  2, v´=1
HBr V.v´=m+8 Agust,heima,....HBr/Jan11/19930_ pxp Agust,www,....hbr/Jan11/PPT ak.ppt Agust,heima,...HBr/Jan11/XLS ak.xls.
CH3Br, HBr detection agust, www,...Sept09/PPT ak.ppt.
HCl agust,heima,...Sept10/aHCl(3+1)j3S(0)Calc ak.pxp (JMS paper) agust,www,....Sept10/PPT ak.ppt agust,heima,...Sept10/HCl(3+1)j3Sigma(0) Calc ak.pxp.
2 AB AB + + e AB* AB +* + e n h or n 1 h 1 + n 2 h 2 + : -absorption 1h  n h  -ionization Energy.
HBr agust,www,.....Jan11/PPT ak.ppt agust,heima,...Jan11/PXP ak.pxp agust,heima,...Jan11/HBr18820_ pxp.
1 CH3Br, C, C* and C** dissociation formation channels vs C+ spectra Explanation for enhanced C+ Rydberg state spectra in the cm-1.
HCl Calc. Vs exp (f3D2) state(Morse Pot): AK(PC-Labt)/C....Experiment ej.pxp AK(PC-Labt)/C....Experiment ejak.ppt Data from pxp file from EJ:
HBr agust,www,....June11/PPT ak.ppt agust, heima,...June11/XLS ak.xls agust, heima,....June11/PXP ak.pxp 1) HBr absorption vs excitations.
H35Cl, j(0+) intensity ratio analysis and comparison of experimental data agust,www,....Jan11/PPT ak.ppt agust,heima,...Jan11/Evaluation of coupling.
HBr, (updated ; slide 12) V(m+i) /HBr+(v+) spectra analysis
HCl, negative ion detections 1hv ion-pair spectra (slides 3-4) Loock´s prediction about H+ + Cl- formation channels(slides 5-6) Energetics vs Dye for V(v´= )
Plan for HBr VMI experiments in FORTH, autumn 2014 & progress -one and two-color experiments States to study……………………………………………….2-3 Rotational lines……………………………………………….4-5.
HBr, E(0), KERs and relative intensities revisited: Content:pages: KER spectra and „channel.
VMI images –fitting Helgi Rafn Hróðmarsson. The purpose of this fitting procedure is to check whether the assumption that the angular distribution data.
SCH-X; X =F, Cl,Br,I Summary: K(eq->ax) (vs T) ax) >(vs T)  G # (eq->#) references.
HBr; Updated: Imaging experiments in Crete Labtop..C:……/Crete/HBr/PPT aka.pptx &
Study of e+e- annihilation at low energies Vladimir Druzhinin Budker Institute of Nuclear Physics (Novosibirsk, Russia) SND - BaBar Lepton-Photon, August,
HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4 Angular distributions………………………………………………………5-7.
HBr Energetics agust,www,....hbr/PPT ak.ppt agust, heima,...HBr/XLS ak.xls.
HBr, angular distribution analysis E(0) Updated,
Magic Numbers in Large Hydrated Alkali Metal Clusters: K + and Cs + Matthew L. Ackerman, Jason D. Rodriguez, Dorothy J. Miller, and James M. Lisy University.
SCH-Br Summary of spectra vs T, (slides: 3-7 (“hot”); 10-11(“cold”)) calc. vs. exp. chemical shift differences for ax.-eq. (C2-C6, C3-C5, C4) (slides 11)
HBr, V(m+4) (and E(0)) (Updated ; slide: 24-6) 1)KER spectra vs J´ (slides 2-3) 2)I(H + + Br(1/2))/I(H + + Br(3/2)) vs. J´(slide 4) 3)Comparison.
Why is the BAT survey for AGN Important? All previous AGN surveys were biased- –Most AGN are ‘obscured’ in the UV/optical –IR properties show wide scatter.
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
CH3I VMI-REMPI data and analysis:
HBr, Angular distributions for V(m+i), i = 4-10; J´
Interaction of p orbitals in polyenes at the Huckel level of theory
p0 life time analysis: general method, updates and preliminary result
RAA predictions show enhancement highly sensitive to jet quenching
Updated (p:15-16, refs. & p:50-51)
Measurements of some J/ and c decays at BES
DCl (HCl) Heavy Rydberg states work Exploring V state spectra
GeCH-Me Summary of spectra vs T, DNMR analysis and figure for publication PPT:
Content: - Comparison of CH3 and CH2 KER - KER assignment for the two color experiment dissociation at 270 nm and probing of CH3 at nm (211 transition)
H(0), one-color, VMI and slicing images
HBr, 3S-, J´= 8 & V(m+9) Updated:
University of Minnesota on behalf of the CLEO Collaboration
2 color VMI exp. CH3(X;v1v2v3v4) detection; hi
VMI-fitting results for V(m+i), i=4-10
UVIS Calibration Update
Study of e+e- pp process using initial state radiation with BaBar
6pp 3S- vs l / J´ Updated: One color, H+ detection: pages
HBr Mass resolved REMPI and Imaging REMPI.
CH3I summary This file includes some ideas about dissociation of
CH3I VMI-REMPI data and analysis:
SCH-I Summary of spectra vs T, (slides: 3-7 (“hot”); 9-10(“cold”))
w and r± sources of p0 background in PRIMEX
CH3Br Negative particle detections; Electrons /PES:
HBr The cm-1 system (slides 2-16)
KER predictions for Br+ images
Presentation transcript:

HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4 Prediction calculations……………………………………………………5 Angular distributions………………………………………………………6,7  2 vs J´ ………………….……………………………………………………… Effects of inserting beta6 into the angular distribution one-step fit function……………………………………………………11-12 Two-color exp………………………………………………………………13 Br detection…………………………………………………………………14-18 Br* detection……………………………………………………………… H detection………………………………………………………………… Updated:

…PXP ,pxp; Lay:0; Gr:1 …….XLS xlsx KER/eV I(H*+Br*) I(H*+Br) HBr + */HBr + J´=J´´= Integral values E(1)

…PXP ,pxp; Lay:1; Gr:2 I(H*+Br*)/I(H*+Br) J´ Comment; Minimum is of Interesting with respect to the comparison with the mass resolved spectra analysis. E(1)

…PXP ,pxp; Lay:2; Gr:3 I(HBr + /HBr + *)/I(H*+Br) J´ Virtually unchanged with J´(?) E(1)

I(H*+Br*) I(H*+Br) HBr + */HBr + Prediction calculations ½ <- ½ 3/2 <- 3/ v + = …PXP a,pxp; Lay:6; Gr:1; <= ……XLS xlsx, sheet: „KER I, II“ and „KER III,IV“; NB: conversion factor for KER = e-5*(pix)**2 = KER(eV) KER/eV J´= J´´= ? E(1)

…PXP a,pxp; Lay:7; Gr:11; …PXP a,pxp; Lay:8; Gr:12; E(0), H* + Br* J´=J´´= E(0), H* + Br J´=J´´=   E(1)

HBr + (top peak)  …PXP a,pxp; Lay:9; Gr:13; <= ……XLS xlsx, sheet: „Angle processing“ J´=J´´=

Now let´s evaluate  2 by fitting Fitting performed by Wang: H*+Br*: (files: fitting.pxp <= ….E1.pxp; system.xlsx) H*+Br:

J´ 22 I(HBr+;top peak) I(H*+Br*), I(H*+Br) E(1), VMI One-step analysis using  2 and  4 …PXP a,pxp; Lay:13; Gr:17; <= XLS pxp: sheet: „Angle fits“ E(1)

Comments: Not a significant change in  2 with J´ for H*+Br* and H* + Br Larger parallel character in H*+Br* than in H* + Br Virtually purely parallel transition for HBr + (top peak) Slight decrease in  2 with J´ for HBr + (top peak)

J´ 22 I(H*+Br*), E(1), VMI One-step analysis using  2 and  4 …PXP a,pxp; Lay:13; Gr:17; <= XLS pxp: sheet: „Angle fits“ E(1) Solid line obtained by fitting b2 and b4 only Broken line obtained by fitnning b2,b4 and b6 No significant change

E(1), H*+Br* J´startendchisqprogrADeltaAbeta2Deltab2beta4Delta b4Beta6Delta B6Gr:IGOR filewxwy 03330, VMI1stepC0,422330,002471,48910,0166-0,347910,01710, ,021518fittingforV , VMI1stepC0,600170,001461,09870, ,571730,00720, , fittingforV , VMI1stepC0,582090,007571,12620, ,475290,008580,043290,010720fittingforV , VMI1stepC0,467350,00141,19680,0079-0,419090,008780, fittingforV , VMI1stepC0,55340,002051,1850, ,428480,01080, ,013622fittingforV , VMI1stepC0,512610,001861,2770, ,384270,01060, ,013423fittingforV , VMI1stepC0,505390,0021,16620,0103-0,403030,0116-0, ,014524fittingforV8787 J´startendchisqprogrADeltaAbeta2Deltab2beta4Delta b4Gr:IGOR filewywx 03330, VMI1stepB0,422260,002431,48860,0163-0,347460,016818fitting , VMI1stepB0,599580,002411,09570,0103-0,569380,011919fitting , VMI1stepB0,581690,002111,12410, ,473610,010720fitting , VMI1stepB0,466880,002061,19380,0116-0,416530,01321fitting , VMI1stepB0,553390,002011,18490, ,428430,010622fitting , VMI1stepB0,512830,001961,27820,0103-0,385380,011223fitting , VMI1stepB0,505440,001961,16650,0102-0,403270,011424fitting877 Adding beta6 has very little effect on beta2 and beta4 ….system.vhw-aka xlsx <= from Wang

Two-color experiments:

Two-color experiments Br detection:

Two color Br detection: E(1) pix …PXP b.pxp; Lay:7, Gr:39 J´=J´´=

Two color, Br detection: E(1) KER(total) eV …PXP b.pxp; Lay:10, Gr:42 J´=J´´=

Br peak= „The 1hv peak“ J´=J´´= …PXP b.pxp; Lay:8, Gr:40 Two color Br detection: E(1) 

22 Br peak= „The 1hv peak“ E(1), two color, Br detection One-step analysis using  2 and  4 J´ …PXP b.pxp; Lay:9, Gr:41 Two color Br-detection:

Two-color experiments Br* detection:

J´=1 J´=2 J´=3

J´=J´´= Two color, Br* detection (exp: ): E(1) …PXP b.pxp; Lay:11, Gr:46 1hv 2hv

…PXP b.pxp; Lay:12, Gr:48  …PXP b.pxp; Lay:13, Gr:49 Two color, Br* detection (exp: ): E(1) 1hv J´=J´´= J´=J´´= hv NO bgr correction

Two color, Br* detection (exp: ): E(1) 1hv J´ …PXP b.pxp; Lay:14, Gr:50 2hv NO bgr correction Too high negative value ERGO: bgr needs to be considered

…PXP b.pxp; Lay:13, Gr:49 Two color, Br* detection (exp: ): E(1) J´=J´´= hv NO bgr correction J´=1 J´=2

…PXP b.pxp; Lay:13, Gr:49 Two color, Br* detection (exp: ): E(1) J´=J´´= hv NO bgr correction J´=3

Two color, Br* detection (exp: ): E(1) …PXP bb.pxp; Lay:13, Gr:49 1st elimination2nd elimination

1st elimination 2nd elimination Two color, Br* detection (exp: ): E(1) …PXP bb.pxp; Lay:14, Gr:50 2hv 1hv

Two-color experiments H detection:

E(1) Two color exp. H-detection: H detection, one color, nm (H->->H* resonance) H detection, one color, nm (J´´=0->->J´=0 resonance: cm-1) Two-color, 1) nm (HBr resonance excitation) 2) nm H resonance excitation, …PXP c.pxp; Lay:0, Gr:14 KER(total) eV

E(1) Two color exp., H-detection: One color, H detection, nm (J´´=0->->J´=0 resonance: cm-1) Two-color, 1) nm (HBr resonance excitation) 2) nm H resonance excitation, Two color – one color …PXP c.pxp; Lay:1, Gr:15 KER(total) eV

E(1) Two color exp., H-detection: …PXP c.pxp; Lay:1, Gr:15; ….XLS a.xlsx; sheet: KERa,hv,Br (prediction calc.) H detection, one color, nm (H->->H* resonance) Two color – one color Prediction calculations J´=0 J´=0-6 KER(total) eV

E(1) Two color exp., H-detection: subtraction attempt(?????): Two color – one color H detection, one color, nm (H->->H* resonance) …PXP c.pxp; Lay:3, Gr:17; ….XLS a.xlsx; sheet: KERa,hv,Br (prediction calc.) Difference spectrum after scaling the „subspectra „below. Could the difference spectrum be a sum of two contributions? -One for dissociation of HBr* -One for dissociation of HBr+ KER(total) eV

Now perform prediction calculation for KER(H) for HBr+ -> H + Br+

E(1) Two color exp., H-detection: Two color – one color H detection, one color, nm (H->->H* resonance) …PXP c.pxp; Lay:3, Gr:17; ….XLS b.xlsx; sheet: KER,I,II(prediction calc.) Difference spectrum after scaling the „subspectra „below. KER(total) eV V+= Prediction calculation for H + Br+ formation for hv + HBr+(v+) -> H+ + Br vs. v+, J´=0