Open AUC Update CFA & Sednterp San Antonio 2012
HARDWARE Open AUC
CFA 5 feet 3 feet
Rotor Fiber composite Titanium inserts 8-hole 60,000 rpm 6.5 cm center Uses current cells In situ temperature measurement In testing
Electronic interfaces Synchronizer RAM Master clock 14-bit 5 MHz A/DSource/detector control Power supply & stack
Multiple synchronizing modes Open collection Fluorescence Once in a revolution HRI, MWA Many times per revolution LALS 0.1 o resolution and accuracy Offset, delay, duration for each revolution Number of repeats per acquisition event 1 to infinity Background computer updating CFA Synchronizer Synchronizer Master clock
CFA ‘Stack’ architecture Up to 15 stacks Up to 7 boards/stack Master clock 8 MHz auto ranging Synchronizer 14-bit DAC 3x1-Mbyte RAM Source/detector control Each board knows its address Address: Optical track, stack, board number, board type Polled on software start up 10 cm Power supply Master clock Synchro DAC Memory SrcDetCTRL 10 cm 15 cm
48-bit parallel DIO 11 bit address/command 4-bit “stack” address 3-bit board address 4-bit command 16 bits data out 16 bits data in μ s Data acquisition bus
Motion control Provisions for Stepping motors Linear motors Servo motors Common interface Stepping motor driven monochromator Servo driven optical platform Linear motor scanner
Motion control subsystem Separate computer Token ring network Up to 255 trajectory generators Ramp speed up/down Event generation Encoded position Threaded TG1 TG2 TG3 TG4 TGi CPU CFA motion control Motion Control Optical tracks Master daemon
MWA Absorbance optics 0.06 OD Scan interval = 10 – 15 seconds
CFA Software subsystems Master Daemon- communications/UI Machine- vacuum, temp control, rpm Motion control- steppers, servos, linears μs DIO- clocks, synchros, DACs, memory ms DIO- address, temp logger, A/D Optical tracks- sources, detectors Experiment- setup, protocol Sednterp2- solutions, calculations System integration
CFA schematic Master Daemon OT1 S2 S3 S4 S1 D1 D2 D3 D4 OT2 S2 S3 S4 S1 D1 D2 D3 D4 OT3 S2 S3 S4 S1 D1 D2 D3 D4 Experiment Machine μs DIO ms DIO Motion Control D1 Stack D1 Motion S2 Stack S2 Motion D2 Stack D2 Motion S3 Stack S3 Motion S1 Stack S1 Motion D4 Stack D4 Motion S4Stack S4 Motion D3 Stack D3Motion D1 Stack D1 Motion S2 Stack S2 Motion D2 Stack D2 Motion S3 Stack S3 Motion S1 Stack S1 Motion D4 Stack D4 Motion S4Stack S4 Motion D3 Stack D3Motion D1 Stack D1 Motion S2 Stack S2 Motion D2 Stack D2 Motion S3 Stack S3 Motion S1 Stack S1 Motion D4 Stack D4 Motion S4Stack S4 Motion D3 Stack D3Motion Sednterp2 External programs
Experiment subsystem User Login (optional) Setup Rotor, cells, channels, windows, etc. Samples Match with channels Sednterp 2 Protocol Which optical systems with which samples Number of scans, delay, interval Advanced- optical system characteristics (e.g. gains) RPM, temperature, wait before starting
CFA software status SubsystemDesignBuild Test DriverIntegration Machine √√√√ Motion control √√√√ μs DIO √√√√ ms DIO √√√√ Master Daemon √√√ Optical tracks √√ Experiment √√ Sednterp 2 √√√
SEDNTERP 2 Update on
Sednterp 2 Based on Sednterp 1 Thanks to John Philo Same calculations Same logic Imports existing Sednterp 1 data Multiple versions Windows XP 7 Mac OSs Linux Web
What’s new in Sednterp 2 Uses “daemon” model SQLite DB Javascript computations in modules Rendering engines for desktop & web Public web version in May David Hayes’ help file now is a Wiki PDF version available for “unconnected” computers Daemon has TCP/IP socket Allows external programs to use Sednterp 2 XML commands documented CFA software will use this
Why use Java script? No recompilation New Computations New Tables of values New User interfaces New Graphs E.g. Concentration unit conversion Download:
Many thanks to Bo Demeler Helmut Cölfen Michael Brigham-Burke BITC John Philo David Hayes Walter Stafford Jack Correia