Hardware/ Software Partitioning 2011 年 12 月 09 日 Peter Marwedel TU Dortmund, Informatik 12 Germany Graphics: © Alexandra Nolte, Gesine Marwedel, 2003 These.

Slides:



Advertisements
Similar presentations
Technische universität dortmund fakultät für informatik informatik 12 Models of computation Peter Marwedel TU Dortmund Informatik 12 Graphics: © Alexandra.
Advertisements

Fakultät für informatik informatik 12 technische universität dortmund Optimizations - Compilation for Embedded Processors - Peter Marwedel TU Dortmund.
fakultät für informatik informatik 12 technische universität dortmund Additional compiler optimizations Peter Marwedel TU Dortmund Informatik 12 Germany.
Evaluation and Validation
Fakultät für informatik informatik 12 technische universität dortmund Specifications and Modeling Peter Marwedel TU Dortmund, Informatik 12 Graphics: ©
Fakultät für informatik informatik 12 technische universität dortmund Standard Optimization Techniques Peter Marwedel Informatik 12 TU Dortmund Germany.
Fakultät für informatik informatik 12 technische universität dortmund SDL Peter Marwedel TU Dortmund, Informatik 12 Graphics: © Alexandra Nolte, Gesine.
Technische universität dortmund fakultät für informatik informatik 12 Discrete Event Models Peter Marwedel TU Dortmund, Informatik 12 Germany
Technische universität dortmund fakultät für informatik informatik 12 Specifications and Modeling Peter Marwedel TU Dortmund, Informatik
fakultät für informatik informatik 12 technische universität dortmund Optimizations - Compilation for Embedded Processors - Peter Marwedel TU Dortmund.
Fakultät für informatik informatik 12 technische universität dortmund Classical scheduling algorithms for periodic systems Peter Marwedel TU Dortmund,
© 2004 Wayne Wolf Topics Task-level partitioning. Hardware/software partitioning.  Bus-based systems.
- 1 -  P. Marwedel, Univ. Dortmund, Informatik 12, 2003 Universität Dortmund Hardware/Software Codesign.
Technische universität dortmund fakultät für informatik informatik 12 Specifications, Modeling, and Model of Computation Jian-Jia Chen (slides are based.
Technische universität dortmund fakultät für informatik informatik 12 Discrete Event Models Jian-Jia Chen (slides are based on Peter Marwedel) TU Dortmund,
CMSC 611: Advanced Computer Architecture
ECE-777 System Level Design and Automation Hardware/Software Co-design
ECOE 560 Design Methodologies and Tools for Software/Hardware Systems Spring 2004 Serdar Taşıran.
Introduction to Computer Science 2 Lecture 7: Extended binary trees
Fakultät für informatik informatik 12 technische universität dortmund Lab 4: Exploiting the memory hierarchy - Session 14 - Peter Marwedel Heiko Falk TU.
Mapping of Applications to Platforms Peter Marwedel TU Dortmund, Informatik 12 Germany Graphics: © Alexandra Nolte, Gesine Marwedel, 2003 These slides.
Mapping of Applications to Platforms Peter Marwedel TU Dortmund, Informatik 12 Germany Graphics: © Alexandra Nolte, Gesine Marwedel, 2003 These slides.
ISBN Chapter 3 Describing Syntax and Semantics.
- 1 -  P. Marwedel, Univ. Dortmund, Informatik 12, 05/06 Universität Dortmund Hardware/Software Codesign.
1 HW/SW Partitioning Embedded Systems Design. 2 Hardware/Software Codesign “Exploration of the system design space formed by combinations of hardware.
CS244-Introduction to Embedded Systems and Ubiquitous Computing Instructor: Eli Bozorgzadeh Computer Science Department UC Irvine Winter 2010.
Mahapatra-Texas A&M-Fall'001 cosynthesis Introduction to cosynthesis Rabi Mahapatra CPSC498.
Process Scheduling for Performance Estimation and Synthesis of Hardware/Software Systems Slide 1 Process Scheduling for Performance Estimation and Synthesis.
Define Embedded Systems Small (?) Application Specific Computer Systems.
Scheduling with Optimized Communication for Time-Triggered Embedded Systems Slide 1 Scheduling with Optimized Communication for Time-Triggered Embedded.
System Partitioning Kris Kuchcinski
1 EE249 Discussion A Method for Architecture Exploration for Heterogeneous Signal Processing Systems Sam Williams EE249 Discussion Section October 15,
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 5: February 2, 2009 Architecture Synthesis (Provisioning, Allocation)
Fakultät für informatik informatik 12 technische universität dortmund Classical scheduling algorithms for periodic systems Peter Marwedel TU Dortmund,
November 18, 2004 Embedded System Design Flow Arkadeb Ghosal Alessandro Pinto Daniele Gasperini Alberto Sangiovanni-Vincentelli
Describing Syntax and Semantics
Winter-Spring 2001Codesign of Embedded Systems1 Introduction to HW/SW Co-Synthesis Algorithms Part of HW/SW Codesign of Embedded Systems Course (CE )
Mahapatra-Texas A&M-Fall'001 Codesign Framework Parts of this lecture are borrowed from lectures of Johan Lilius of TUCS and ASV/LL of UC Berkeley available.
Penn ESE535 Spring DeHon 1 ESE535: Electronic Design Automation Day 5: February 2, 2009 Architecture Synthesis (Provisioning, Allocation)
- 1 -  P. Marwedel, Univ. Dortmund, Informatik 12, 2003 Universität Dortmund Actual design flows and tools.
Universität Dortmund  P. Marwedel, Univ. Dortmund, Informatik 12, 2003 Hardware/software partitioning  Functionality to be implemented in software.
Operations Research Models
Exercise problems for students taking the Programming Parallel Computers course. Janusz Kowalik Piotr Arlukowicz Tadeusz Puzniakowski Informatics Institute.
CIS Computer Programming Logic
CS/ECE 3330 Computer Architecture Kim Hazelwood Fall 2009.
1 Towards Optimal Custom Instruction Processors Wayne Luk Kubilay Atasu, Rob Dimond and Oskar Mencer Department of Computing Imperial College London HOT.
Hardware/Software Co-design Design of Hardware/Software Systems A Class Presentation for VLSI Course by : Akbar Sharifi Based on the work presented in.
Evaluation and Validation Peter Marwedel TU Dortmund, Informatik 12 Germany 2013 年 12 月 02 日 These slides use Microsoft clip arts. Microsoft copyright.
A Graph Based Algorithm for Data Path Optimization in Custom Processors J. Trajkovic, M. Reshadi, B. Gorjiara, D. Gajski Center for Embedded Computer Systems.
Unit-1 Introduction Prepared by: Prof. Harish I Rathod
Chapter 5B: Hardware/Software Codesign / Partitioning EECE **** Embedded System Design.
- 1 - EE898_HW/SW Partitioning Hardware/software partitioning  Functionality to be implemented in software or in hardware? No need to consider special.
Hardware/Software Codesign of Embedded Systems
CS244-Introduction to Embedded Systems and Ubiquitous Computing Instructor: Eli Bozorgzadeh Computer Science Department UC Irvine Winter 2010.
Resource Mapping and Scheduling for Heterogeneous Network Processor Systems Liang Yang, Tushar Gohad, Pavel Ghosh, Devesh Sinha, Arunabha Sen and Andrea.
MILAN: Technical Overview October 2, 2002 Akos Ledeczi MILAN Workshop Institute for Software Integrated.
6. A PPLICATION MAPPING 6.3 HW/SW partitioning 6.4 Mapping to heterogeneous multi-processors 1 6. Application mapping (part 2)
System-level power analysis and estimation September 20, 2006 Chong-Min Kyung.
ICC Module 3 Lesson 1 – Computer Architecture 1 / 26 © 2015 Ph. Janson Information, Computing & Communication Computer Architecture Clip 1 – Assembler.
1 Copyright  2001 Pao-Ann Hsiung SW HW Module Outline l Introduction l Unified HW/SW Representations l HW/SW Partitioning Techniques l Integrated HW/SW.
Classical scheduling algorithms for periodic systems Peter Marwedel TU Dortmund, Informatik 12 Germany 2012 年 12 月 19 日 These slides use Microsoft clip.
Winter-Spring 2001Codesign of Embedded Systems1 Co-Synthesis Algorithms: Distributed System Co- Synthesis Part of HW/SW Codesign of Embedded Systems Course.
Mapping of Applications to Multi-Processor Systems Peter Marwedel TU Dortmund, Informatik 12 Germany 2012 年 07 月 09 日 Graphics: © Alexandra Nolte, Gesine.
Introduction to cosynthesis Rabi Mahapatra CSCE617
Standard Optimization Techniques
CSCI1600: Embedded and Real Time Software
Objective of This Course
Evaluation and Validation
Specifications and Modeling
CSCI1600: Embedded and Real Time Software
Presentation transcript:

Hardware/ Software Partitioning 2011 年 12 月 09 日 Peter Marwedel TU Dortmund, Informatik 12 Germany Graphics: © Alexandra Nolte, Gesine Marwedel, 2003 These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

- 2 -  p. marwedel, informatik 12, 2011 Structure of this course 2: Specification 3: ES-hardware 4: system software (RTOS, middleware, …) 8: Test 5: Evaluation & validation (energy, cost, performance, …) 7: Optimization 6: Application mapping Application Knowledge Design repository Design Numbers denote sequence of chapters

- 3 -  p. marwedel, informatik 12, 2011 Hardware/software partitioning  Functionality to be implemented in software or in hardware? Correct for fixed functionality, but wrong in general: “By the time MPEG- n can be implemented in software, MPEG- n +1 has been invented” [de Man] No need to consider special hardware in the future? % 100 Hardware Software t

- 4 -  p. marwedel, informatik 12, 2011 Functionality to be implemented in software or in hardware? Decision based on hardware/ software partitioning, a special case of hardware/ software codesign.

- 5 -  p. marwedel, informatik 12, 2011 Codesign Tool (COOL) as an example of HW/SW partitioning Inputs to COOL: 1.Target technology 2.Design constraints 3.Required behavior

- 6 -  p. marwedel, informatik 12, 2011 Hardware/software codesign: approach [Niemann, Hardware/Software Co-Design for Data Flow Dominated Embedded Systems, Kluwer Academic Publishers, 1998 (Comprehensive mathematical model)] Processor P1 Processor P2 Hardware Specification Mapping p

- 7 -  p. marwedel, informatik 12, 2011 Steps of the COOL partitioning algorithm (1) 1.Translation of the behavior into an internal graph model 2.Translation of the behavior of each node from VHDL into C 3.Compilation All C programs compiled for the target processor, Computation of the resulting program size, estimation of the resulting execution time (simulation input data might be required) 4.Synthesis of hardware components:  leaf nodes, application-specific hardware is synthesized. High-level synthesis sufficiently fast.

- 8 -  p. marwedel, informatik 12, 2011 Steps of the COOL partitioning algorithm (2) 5.Flattening of the hierarchy: Granularity used by the designer is maintained. Cost and performance information added to the nodes. Precise information required for partitioning is pre- computed 6.Generating and solving a mathematical model of the optimization problem: Integer linear programming ILP model for optimization. Optimal with respect to the cost function (approximates communication time)

- 9 -  p. marwedel, informatik 12, 2011 Steps of the COOL partitioning algorithm (3) 7.Iterative improvements: Adjacent nodes mapped to the same hardware component are now merged.

 p. marwedel, informatik 12, 2011 Steps of the COOL partitioning algorithm (4) 8.Interface synthesis: After partitioning, the glue logic required for interfacing processors, application-specific hardware and memories is created.

 p. marwedel, informatik 12, 2011 An integer linear programming model for HW/SW partitioning Notation:  Index set V denotes task graph nodes.  Index set L denotes task graph node types e.g. square root, DCT or FFT  Index set M denotes hardware component types. e.g. hardware components for the DCT or the FFT.  Index set J of hardware component instances  Index set KP denotes processors. All processors are assumed to be of the same type

 p. marwedel, informatik 12, 2011 An ILP model for HW/SW partitioning  X v,m : =1 if node v is mapped to hardware component type m  M and 0 otherwise.  Y v,k : =1 if node v is mapped to processor k  KP and 0 otherwise.  NY l, k =1 if at least one node of type l is mapped to processor k  KP and 0 otherwise.  Type is a mapping from task graph nodes to their types: Type : V  L  The cost function accumulates the cost of hardware units: C = cost(processors) + cost(memories) + cost(application specific hardware)

 p. marwedel, informatik 12, 2011 Constraints Operation assignment constraints All task graph nodes have to be mapped either in software or in hardware. Variables are assumed to be integers. Additional constraints to guarantee they are either 0 or 1:

 p. marwedel, informatik 12, 2011 Operation assignment constraints (2)  l  L,  v:Type(v)=c l,  k  KP : NY l, k  Y v,k For all types l of operations and for all nodes v of this type: if v is mapped to some processor k, then that processor must implement the functionality of l. Decision variables must also be 0/1 variables:  l  L,  k  KP : NY l, k  1.

 p. marwedel, informatik 12, 2011 Resource & design constraints   m  M, the cost (area) for components of type m is = sum of the costs of the components of that type. This cost should not exceed its maximum.   k  KP, the cost for associated data storage area should not exceed its maximum.   k  KP the cost for storing instructions should not exceed its maximum.  The total cost (  m  M ) of HW components should not exceed its maximum  The total cost of data memories (  k  KP ) should not exceed its maximum  The total cost instruction memories (  k  KP ) should not exceed its maximum

 p. marwedel, informatik 12, 2011 Scheduling Processor p 1 ASIC h 1 FIR 1 FIR 2 v1v1 v2v2 v3v3 v4v4 v9v9 v 10 v 11 v5v5 v6v6 v7v7 v8v8 e3e3 e4e4 t p1p1 v8v8 v7v7 v7v7 v8v8 or... t c1c1 or... e3e3 e3e3 e4e4 e4e4 t FIR 2 on h 1 v4v4 v3v3 v3v3 v4v4 or... Communication channel c 1

 p. marwedel, informatik 12, 2011 Scheduling / precedence constraints  For all nodes v i1 and v i2 that are potentially mapped to the same processor or hardware component instance, introduce a binary decision variable b i1,i2 with b i1,i2 =1 if v i1 is executed before v i2 and = 0 otherwise. Define constraints of the type (end-time of v i1 )  (start time of v i2 ) if b i1,i2 =1 and (end-time of v i2 )  (start time of v i1 ) if b i1,i2 =0  Ensure that the schedule for executing operations is consistent with the precedence constraints in the task graph.  Approach fixes the order of execution

 p. marwedel, informatik 12, 2011 Other constraints  Timing constraints These constraints can be used to guarantee that certain time constraints are met.  Some less important constraints omitted..

 p. marwedel, informatik 12, 2011 Example HW types H1, H2 and H3 with costs of 20, 25, and 30. Processors of type P. Tasks T1 to T5. Execution times: TH1H2H3P

 p. marwedel, informatik 12, 2011 Operation assignment constraints (1) TH1H2H3P X 1,1 +Y 1,1 =1 (task 1 mapped to H1 or to P ) X 2,2 +Y 2,1 =1 X 3,3 +Y 3,1 =1 X 4,3 +Y 4,1 =1 X 5,1 +Y 5,1 =1

 p. marwedel, informatik 12, 2011 Operation assignment constraints (2) Assume types of tasks are l =1, 2, 3, 3, and 1.  l  L,  v:Type(v)=c l,  k  KP : NY l,k  Y v,k Functionality 3 to be implemented on processor if node 4 is mapped to it.

 p. marwedel, informatik 12, 2011 Other equations Time constraints leading to: Application specific hardware required for time constraints  100 time units. TH1H2H3P Cost function: C =20 #( H1 ) + 25 #( H2 ) + 30 # ( H3 ) + cost(processor) + cost(memory)

 p. marwedel, informatik 12, 2011 Result For a time constraint of 100 time units and cost(P)<cost(H3) : TH1H2H3P Solution (educated guessing) : T 1  H 1 T 2  H 2 T 3  P T 4  P T 5  H 1

 p. marwedel, informatik 12, 2011 Separation of scheduling and partitioning Combined scheduling/partitioning very complex;  Heuristic: Compute estimated schedule  Perform partitioning for estimated schedule  Perform final scheduling  If final schedule does not meet time constraint, go to 1 using a reduced overall timing constraint. 2 nd Iteration t specification Actual execution time 1 st Iteration approx. execution time t Actual execution time approx. execution time New specification

 p. marwedel, informatik 12, 2011 Application example Audio lab (mixer, fader, echo, equalizer, balance units); slow SPARC processor 1µ ASIC library Allowable delay of µs (~ 44.1 kHz) SPARC processor ASIC (Compass, 1 µ) External memory Outdated technology; just a proof of concept.

 p. marwedel, informatik 12, 2011 Running time for COOL optimization  Only simple models can be solved optimally.

 p. marwedel, informatik 12, 2011 Deviation from optimal design  Hardly any loss in design quality.

 p. marwedel, informatik 12, 2011 Running time for heuristic

 p. marwedel, informatik 12, 2011 Design space for audio lab Everything in software: 72.9 µs, 0 2 Everything in hardware: 3.06 µs, 457.9x Lowest cost for given sample rate: 18.6 µs, 78.4x10 6 2,

 p. marwedel, informatik 12, 2011 Positioning of COOL COOL approach:  shows that a formal model of hardware/SW codesign is beneficial; IP modeling can lead to useful implementation even if optimal result is available only for small designs. Other approaches for HW/SW partitioning:  starting with everything mapped to hardware; gradually moving to software as long as timing constraint is met.  starting with everything mapped to software; gradually moving to hardware until timing constraint is met.  Binary search.

 p. marwedel, informatik 12, 2011 HW/SW partitioning in the context of mapping applications to processors  Handling of heterogeneous systems  Handling of task dependencies  Considers of communication (at least in COOL)  Considers memory sizes etc (at least in COOL)  For COOL: just homogeneous processors  No link to scheduling theory