ECG Signal processing (2)

Slides:



Advertisements
Similar presentations
Support Vector Machine & Its Applications
Advertisements

Introduction to Support Vector Machines (SVM)
Lecture 9 Support Vector Machines
Image classification Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?
Support Vector Machine & Its Applications Mingyue Tan The University of British Columbia Nov 26, 2004 A portion (1/3) of the slides are taken from Prof.
SVM - Support Vector Machines A new classification method for both linear and nonlinear data It uses a nonlinear mapping to transform the original training.
ONLINE ARABIC HANDWRITING RECOGNITION By George Kour Supervised by Dr. Raid Saabne.
An Introduction of Support Vector Machine
Classification / Regression Support Vector Machines
Pattern Recognition and Machine Learning
An Introduction of Support Vector Machine
Support Vector Machines
1 Lecture 5 Support Vector Machines Large-margin linear classifier Non-separable case The Kernel trick.
Support vector machine
Machine learning continued Image source:
LPP-HOG: A New Local Image Descriptor for Fast Human Detection Andy Qing Jun Wang and Ru Bo Zhang IEEE International Symposium.
Classification and Decision Boundaries
Discriminative and generative methods for bags of features
Image classification Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing them?
Support Vector Machines (SVMs) Chapter 5 (Duda et al.)
University of Texas at Austin Machine Learning Group Department of Computer Sciences University of Texas at Austin Support Vector Machines.
1 Classification: Definition Given a collection of records (training set ) Each record contains a set of attributes, one of the attributes is the class.
Support Vector Machines
CS 4700: Foundations of Artificial Intelligence
Lecture outline Support vector machines. Support Vector Machines Find a linear hyperplane (decision boundary) that will separate the data.
Support Vector Machines
Lecture 10: Support Vector Machines
Greg GrudicIntro AI1 Support Vector Machine (SVM) Classification Greg Grudic.
Review Rong Jin. Comparison of Different Classification Models  The goal of all classifiers Predicating class label y for an input x Estimate p(y|x)
An Introduction to Support Vector Machines Martin Law.
Classification III Tamara Berg CS Artificial Intelligence Many slides throughout the course adapted from Svetlana Lazebnik, Dan Klein, Stuart Russell,
Ch. Eick: Support Vector Machines: The Main Ideas Reading Material Support Vector Machines: 1.Textbook 2. First 3 columns of Smola/Schönkopf article on.
Classification Tamara Berg CSE 595 Words & Pictures.
Support Vector Machine & Image Classification Applications
1 SUPPORT VECTOR MACHINES İsmail GÜNEŞ. 2 What is SVM? A new generation learning system. A new generation learning system. Based on recent advances in.
Kernel Methods A B M Shawkat Ali 1 2 Data Mining ¤ DM or KDD (Knowledge Discovery in Databases) Extracting previously unknown, valid, and actionable.
SVM Support Vector Machines Presented by: Anas Assiri Supervisor Prof. Dr. Mohamed Batouche.
Classifiers Given a feature representation for images, how do we learn a model for distinguishing features from different classes? Zebra Non-zebra Decision.
An Introduction to Support Vector Machines (M. Law)
Kernels Usman Roshan CS 675 Machine Learning. Feature space representation Consider two classes shown below Data cannot be separated by a hyperplane.
CISC667, F05, Lec22, Liao1 CISC 667 Intro to Bioinformatics (Fall 2005) Support Vector Machines I.
CS 478 – Tools for Machine Learning and Data Mining SVM.
Ohad Hageby IDC Support Vector Machines & Kernel Machines IP Seminar 2008 IDC Herzliya.
An Introduction to Support Vector Machine (SVM)
CS 1699: Intro to Computer Vision Support Vector Machines Prof. Adriana Kovashka University of Pittsburgh October 29, 2015.
University of Texas at Austin Machine Learning Group Department of Computer Sciences University of Texas at Austin Support Vector Machines.
Support vector machine LING 572 Fei Xia Week 8: 2/23/2010 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A 1.
Final Exam Review CS479/679 Pattern Recognition Dr. George Bebis 1.
Greg GrudicIntro AI1 Support Vector Machine (SVM) Classification Greg Grudic.
SVMs in a Nutshell.
Support Vector Machine: An Introduction. (C) by Yu Hen Hu 2 Linear Hyper-plane Classifier For x in the side of o : w T x + b  0; d = +1; For.
An Introduction of Support Vector Machine In part from of Jinwei Gu.
A Brief Introduction to Support Vector Machine (SVM) Most slides were from Prof. A. W. Moore, School of Computer Science, Carnegie Mellon University.
Kernels Slides from Andrew Moore and Mingyue Tan.
An Introduction of Support Vector Machine Courtesy of Jinwei Gu.
Support Vector Machine Slides from Andrew Moore and Mingyue Tan.
PREDICT 422: Practical Machine Learning
Support Vector Machine
Geometrical intuition behind the dual problem
Support Vector Machines
An Introduction to Support Vector Machines
Support Vector Machines Introduction to Data Mining, 2nd Edition by
Statistical Learning Dong Liu Dept. EEIS, USTC.
CS 2750: Machine Learning Support Vector Machines
CSSE463: Image Recognition Day 14
Support Vector Machine
COSC 4335: Other Classification Techniques
Support Vector Machine _ 2 (SVM)
COSC 4368 Machine Learning Organization
SVMs for Document Ranking
Presentation transcript:

ECG Signal processing (2) ECE, UA

Content Introduction Support Vector Machines Active Learning Methods Experiments & Results Conclusion

Introduction ECG signals represent a useful information source about the rhythm and functioning of the heart. To obtain an efficient and robust ECG classification system SVM classifier has a good generalization capability and is less sensitive to the curse of dimensionality. Automatic construction of the set of training samples – active learning

Support Vector Machines the classifier is said to assign a feature vector x to class wI if For two-category case, An example Minimum-Error-Rate Classifier

Discriminant Function It can be arbitrary functions of x, such as: Nearest Neighbor Decision Tree Linear Functions Nonlinear Functions

Linear Discriminant Function g(x) is a linear function: x2 wT x + b > 0 A hyper-plane in the feature space wT x + b = 0 n (Unit-length) normal vector of the hyper-plane: wT x + b < 0 x1

Linear Discriminant Function denotes +1 denotes -1 How would you classify these points using a linear discriminant function in order to minimize the error rate? x2 Infinite number of answers! x1

Linear Discriminant Function denotes +1 denotes -1 How would you classify these points using a linear discriminant function in order to minimize the error rate? x2 Infinite number of answers! x1

Linear Discriminant Function denotes +1 denotes -1 How would you classify these points using a linear discriminant function in order to minimize the error rate? x2 Infinite number of answers! x1

Linear Discriminant Function denotes +1 denotes -1 How would you classify these points using a linear discriminant function in order to minimize the error rate? x2 Infinite number of answers! Which one is the best? x1

Large Margin Linear Classifier denotes +1 denotes -1 The linear discriminant function (classifier) with the maximum margin is the best x2 Margin “safe zone” Margin is defined as the width that the boundary could be increased by before hitting a data point Why it is the best? Robust to outliners and thus strong generalization ability x1

Large Margin Linear Classifier denotes +1 denotes -1 Given a set of data points: x2 , where With a scale transformation on both w and b, the above is equivalent to x1

Large Margin Linear Classifier denotes +1 denotes -1 We know that x2 Margin x+ x- wT x + b = 1 Support Vectors wT x + b = 0 wT x + b = -1 The margin width is: n x1

Large Margin Linear Classifier denotes +1 denotes -1 Formulation: x2 Margin x+ x- wT x + b = 1 such that wT x + b = 0 wT x + b = -1 n x1

Large Margin Linear Classifier denotes +1 denotes -1 Formulation: x2 Margin x+ x- wT x + b = 1 such that wT x + b = 0 wT x + b = -1 n x1

Large Margin Linear Classifier denotes +1 denotes -1 Formulation: x2 Margin x+ x- wT x + b = 1 such that wT x + b = 0 wT x + b = -1 n x1

Solving the Optimization Problem s.t. Quadratic programming with linear constraints s.t. Lagrangian Function

Solving the Optimization Problem s.t.

Solving the Optimization Problem s.t. Lagrangian Dual Problem s.t. , and

Solving the Optimization Problem From KKT condition, we know: x1 x2 wT x + b = 0 wT x + b = -1 wT x + b = 1 x+ x- Support Vectors Thus, only support vectors have The solution has the form:

Solving the Optimization Problem The linear discriminant function is: Notice it relies on a dot product between the test point x and the support vectors xi Also keep in mind that solving the optimization problem involved computing the dot products xiTxj between all pairs of training points

Large Margin Linear Classifier denotes +1 denotes -1 What if data is not linear separable? (noisy data, outliers, etc.) x2 wT x + b = 0 wT x + b = -1 wT x + b = 1 Slack variables ξi can be added to allow mis-classification of difficult or noisy data points x1

Large Margin Linear Classifier Formulation: such that Parameter C can be viewed as a way to control over-fitting.

Large Margin Linear Classifier Formulation: (Lagrangian Dual Problem) such that

Non-linear SVMs Datasets that are linearly separable with noise work out great: x x But what are we going to do if the dataset is just too hard? How about… mapping data to a higher-dimensional space: x x2 This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt

Non-linear SVMs: Feature Space General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable: Φ: x → φ(x) This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt

Nonlinear SVMs: The Kernel Trick With this mapping, our discriminant function is now: No need to know this mapping explicitly, because we only use the dot product of feature vectors in both the training and test. A kernel function is defined as a function that corresponds to a dot product of two feature vectors in some expanded feature space:

Nonlinear SVMs: The Kernel Trick An example: 2-dimensional vectors x=[x1 x2]; let K(xi,xj)=(1 + xiTxj)2, Need to show that K(xi,xj) = φ(xi) Tφ(xj): K(xi,xj)=(1 + xiTxj)2, = 1+ xi12xj12 + 2 xi1xj1 xi2xj2+ xi22xj22 + 2xi1xj1 + 2xi2xj2 = [1 xi12 √2 xi1xi2 xi22 √2xi1 √2xi2]T [1 xj12 √2 xj1xj2 xj22 √2xj1 √2xj2] = φ(xi) Tφ(xj), where φ(x) = [1 x12 √2 x1x2 x22 √2x1 √2x2] This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt

Nonlinear SVMs: The Kernel Trick Examples of commonly-used kernel functions: Linear kernel: Polynomial kernel: Gaussian (Radial-Basis Function (RBF) ) kernel: Sigmoid: In general, functions that satisfy Mercer’s condition can be kernel functions.

Nonlinear SVM: Optimization Formulation: (Lagrangian Dual Problem) such that The solution of the discriminant function is The optimization technique is the same.

Support Vector Machine: Algorithm 1. Choose a kernel function 2. Choose a value for C 3. Solve the quadratic programming problem (many software packages available) 4. Construct the discriminant function from the support vectors

Some Issues Choice of kernel Choice of kernel parameters - Gaussian or polynomial kernel is default - if ineffective, more elaborate kernels are needed - domain experts can give assistance in formulating appropriate similarity measures Choice of kernel parameters - e.g. σ in Gaussian kernel - σ is the distance between closest points with different classifications - In the absence of reliable criteria, applications rely on the use of a validation set or cross-validation to set such parameters. Optimization criterion – Hard margin v.s. Soft margin - a lengthy series of experiments in which various parameters are tested This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt

Summary: Support Vector Machine 1. Large Margin Classifier Better generalization ability & less over-fitting 2. The Kernel Trick Map data points to higher dimensional space in order to make them linearly separable. Since only dot product is used, we do not need to represent the mapping explicitly.

Active Learning Methods Choosing samples properly so that to maximize the accuracy of the classification process Margin Sampling Posterior Probability Sampling Query by Committee

Experiments & Results Simulated Data chessboard problem linear and radial basis function (RBF) kernels

Experiments & Results B. Real Data MIT-BIH, morphology three ECG temporal features

Conclusion Three active learning strategies for the SVM classification of electrocardiogram (ECG) signals have been presented. Strategy based on the MS principle seems the best as it quickly selects the most informative samples. A further increase of the accuracies could be achieved by feeding the classifier with other kinds of features