ENGR-25_Plot_Model-2.ppt 1 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Bruce Mayer, PE Licensed Electrical.

Slides:



Advertisements
Similar presentations
ENGR-45_Prob_3-5_3-12_2-16_Lab.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Licensed Electrical.
Advertisements

ENGR-36_Lec-28_Application_Sesimic-Analysis.ppt 1 Bruce Mayer, PE Engineering-36: Engineering Mechanics - Statics Bruce Mayer,
ENGR-25_TYU_chp02.ppt 1 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Bruce Mayer, PE Licensed Electrical.
E ENGR-25_Chp2_AirCraft_Separation_.pptx 1 Bruce Mayer, PE Engineering-25: Computational Methods Bruce Mayer, PE Licensed Electrical & Mechanical Engineer.
Chp3 Tutorial: Prob 3.14 Solution
Registered Electrical & Mechanical Engineer
ENGR-25_Plot_Model-2.ppt 1 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Bruce Mayer, PE Licensed Electrical.
1 ECE 221 Electric Circuit Analysis I Chapter 10 Circuit Analysis 4 Ways Herbert G. Mayer, PSU Status 11/23/2014 For use at Changchun University of Technology.
ENGR-25_Prob_9_3_Solution.ppt 1 Bruce Mayer, PE Engineering-25: Computational Methods Bruce Mayer, PE Licensed Electrical & Mechanical Engineer
ENGR-43_Lec-06c_2ndOrder-Filter_MATLAB-BodePlots.pptx 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer,
MTH16_Lec-19_sec_10-3_Taylor_Series.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical.
ENGR-25_Lec-29_MS_Excel-2.ppt 1 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Bruce Mayer, PE Licensed Electrical.
MTH16_Lec-01_sec_6-1_Integration_by_Parts.pptx 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical.
ENGR-25_Lec-25_SimuLink-1.ppt 1 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Bruce Mayer, PE Licensed Electrical.
ENGR-43_Lec-02-4_Single_Loop_Ckts.ppt 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Licensed.
ENGR-43_Lec-02a_SP_VI-Divide_NodeMesh.pptx 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Licensed.
ENGR-43_Prob_5-80_Dual-Src_Complex-Pwr_Solution_.pptx 1 Bruce Mayer, PE Engineering 43: Electrical Circuits & Devices Bruce Mayer,
ENGR 111 Lecture 4 Reading: Chapters 19, Class notes.
Circuits Lecture 1: Overview 李宏毅 Hung-yi Lee. Course Information Time: 09: :00 Wednesday and 10: :10 Friday Place: EE BL R112 Text Book: A.
ENGR-43_Lec-14a_IDeal_Op_Amps.pptx 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Licensed Electrical.
Electrical Circuits Dr. Sarika Khushalani Solanki
ENGR-43_Lec-04b_2nd_Order_Ckts.pptx 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Registered.
4.2.3A Ohm’s Law & Circuit Basics Why Make Electrons Flow Anyway?
Licensed Electrical & Mechanical Engineer
Ohm’s law and Kirchhoff's laws
ENGR-43_Lec-04_Op-Amps.ppt 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Licensed Electrical.
ENGR-43_Lec-12b_FETs-2_LoadLine_Analysis.pptx 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Registered.
ENGR 1320 Final Review - Programming Major Topics: – Functions and Scripts – Vector and Matrix Operations in Matlab Dot product Cross product – Plotting.
ENGR-43_Lec-03-1b_Nodal_Analysis.ppt 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Registered.
ENGR-25_Programming-4.ppt 1 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 1 Bruce Mayer, PE Licensed Electrical.
Licensed Electrical & Mechanical Engineer
IEEE’s Hands on Practical Electronics (HOPE) Lesson 3: Ohm’s Law, Equivalent Resistances.
ENGR-25_MATLAB_OverView-1.ppt 1 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Bruce Mayer, PE Licensed Electrical.
ENGR-25_Programming-3.ppt 1 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Bruce Mayer, PE Licensed Electrical.
ENGR-25_EXCEL_Integration_Tutorial-Example.pptx 1 Bruce Mayer, PE ENGR/MTH/PHYS25: Computational Methods Bruce Mayer, PE Registered.
ENGR-43_Lec-02c_Sp12_MaxPwr_SuperPosition.pptx 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE.
ENGR-43_Lec-04b_2nd_Order_Ckts.pptx 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Registered.
ENGR-44_Lec-03-1a_Nodal_Analysis.ppt 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Licensed Electrical.
Kirchhoff’s Current and Voltage Laws. KCL (Kirchhoff’s Current Law) The sum of the currents entering a node equals the sum of the currents exiting a node.
ENGR-25_Prob_10-25_Catenary_Solution.ppt.ppt 1 Bruce Mayer, PE ENGR/MTH/PHYS25: Computational Methods Bruce Mayer, PE Registered.
ENGR-25_Programming-4.ppt 1 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 1 Bruce Mayer, PE Licensed Electrical.
ENGR-43_Lec-05-3b_Thevein-Norton_Part-b.ppt 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Licensed.
Determine the mathematical models that capture the behavior of an electrical system 1.Elements making up an electrical system 2.First-principles modeling.
ELECTRIC CURRENTS. SIMPLE CIRCUIT What’s providing the energy? What’s “moving” in the circuit? What’s causing the movement? e.m.f. = Electromotive Force.
ENGR-25_Prob_2-24_Solution.ppt 1 Bruce Mayer, PE ENGR/MTH/PHYS25: Computational Methods Bruce Mayer, PE Registered Electrical.
ENGR-25_Prob_6-12_Solution.ppt 1 Bruce Mayer, PE Engineering-25: Computational Methods Bruce Mayer, PE Licensed Electrical & Mechanical Engineer
ENGR-44_Lec-06-2_Inductors.ppt 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Licensed Electrical.
ENGR-43_Lec-04-3b_Thevein-Norton_Part-b.ppt 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Regsitered.
ENGR-43_Lec-02-2b_KVL.ppt 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Licensed Electrical &
What we will do today Define the term ‘potential difference’. Look at the ratio V/I for a resistor. Define an equation relating resistance, voltage and.
Simultaneous Equations Can use matrix maths to solve linear simultaneous equations Arise from: –Electric Circuits Kirchoff’s laws –Fluid Dynamics.
ENGR-36_Lab-06_Fa07_Lec-Notes.ppt 1 Bruce Mayer, PE Engineering-36: Vector Mechanics - Statics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer.
Rowan Hall 238A September 12, 2006 Networks I for M.E. ECE James K. Beard, Ph.D.
© ENGR-43_Prob_14-32_OpAmp_OutPut_Current.pptx 1 Bruce Mayer, PE Engineering-43 Electrical Circuits & Devices Bruce Mayer, PE.
ENGR-43_Lec-05-3b_Thevein-Norton_Part-b.ppt 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Licensed.
ENGR-43_Lec-04b_2nd_Order_Ckts.pptx 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Registered.
ENGR-43_Lec-02-1_Ohms_Law.ppt 1 Bruce Mayer, PE Engineering-43: Engineering Circuit Analysis Bruce Mayer, PE Licensed Electrical.
ENGR-25_Linear_Regression_Tutorial.ppt 1 Bruce Mayer, PE Engineering-25: Computational Methods Bruce Mayer, PE Licensed Electrical & Mechanical Engineer.
Registered Electrical & Mechanical Engineer
a.k.a.: Draw in the Diamond
MaxPower SuperPosition
1 Kirchhoff’s Law. KIRCHHOFF’S LAWS Ohm’s law by itself is insufficient to analyze circuits. However, when combined with Kirchhoff’s two laws, we have.
Licensed Electrical & Mechanical Engineer
Registered Electrical & Mechanical Engineer
Ohm’s Law The relationship between voltage, current and resistance is known as Ohm’s Law: V = IR Voltage (V) = Current (I) x Resistance (R) Volts.
Current Directions and
Licensed Electrical & Mechanical Engineer
Chp3 Nodal Analysis & MATLAB
Chp 2.[5-7] Series-Parallel Resistors
Licensed Electrical & Mechanical Engineer
Presentation transcript:

ENGR-25_Plot_Model-2.ppt 1 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Bruce Mayer, PE Licensed Electrical & Mechanical Engineer Engr/Math/Physics 25 MidTerm Exam Review

ENGR-25_Plot_Model-2.ppt 2 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Problem 4-37  Possible Confusion in Text Book  All R’s Should be in kΩ  Plot at right shows the large currents Generated by Not Using kΩ Prob4_31_KVL_KCL_Plot.m In NO case are ALL Currents  1mA I 5  0 In all Cases

ENGR-25_Plot_Model-2.ppt 3 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Prob 4-37  v2 Variable  Max Resistor Current = 1 mA  v1 = 100 V  All Resistances kΩ

ENGR-25_Plot_Model-2.ppt 4 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods P4-37 Electrical Engineering  Analyze this Circuit using Methods from ENGR43  Specifically use Kirchoff’s Voltage Law (KVL) Ohm’s Law (V = IR) Kirchoff’s Current Law (KCL)  These Laws yield Eqns for the currents

ENGR-25_Plot_Model-2.ppt 5 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods P4-37 Applied Math  The 5 eqns for the 5 currents can be cast into Matrix form:

ENGR-25_Plot_Model-2.ppt 6 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 4-37 MATLAB Numerical Processor  Recall:  Use MATLAB’s LEFT Division to Find the solution vector C  PLOT Results to Analyze Circuit BEHAVIOR Remember – When in Doubt PLOT

ENGR-25_Plot_Model-2.ppt 7 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Plot v2 over 1-400V Green Zone Prob4_31_KVL_KCL_Calc.m

ENGR-25_Plot_Model-2.ppt 8 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 4-37(b)  v2 min (R3), v2 max (R3)  Now Allow R3 to vary: 150 kΩ  250 kΩ  Use solution to part (a) as basis Vary R3 with For-Loop, then Chk v2 as in part (a) 150 k  250 k

ENGR-25_Plot_Model-2.ppt 9 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Plot v2 Max & Min as f(R 3 )  Use Solution from part(a) in FOR loop that Varies R 3 to produce Plot Part (a) Case

ENGR-25_Plot_Model-2.ppt 10 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods All Done for Today This Space For Rent

ENGR-25_Plot_Model-2.ppt 11 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Bruce Mayer, PE Licensed Electrical & Mechanical Engineer Engr/Math/Physics 25 Appendix

ENGR-25_Plot_Model-2.ppt 12 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Prob4_37_KVL_KCL_plot.m - 1 % Bruce Mayer, PE * 08Jul05 % ENGR25 * Problem 4-31 % file = Prob4_31_KCL_KVL.m % % INPUT SECTION %R1 = 5; R2= 100; R3 = 200; R4 = 150; % SingleOhm case R5 = 250e3; R1 = 5e3; R2= 100e3; R3 = 200e3; R4 = 150e3; % kOhm case % Coeff Matrix A v1 = 100 A = [R1 0 0 R4 0; 0 R2 0 -R4 R5; 0 0 R3 0 - R5; ; ]; % % Make Loop with v2 as counter in units of Volts for v2 =1:400 % units of volts %Constraint Vector V V = [v1; 0; -v2; 0; 0]; % find soltion vector for currents, C C = A\V; % Build plotting vectors for current vplot(v2) = v2; i1(v2) = C(1); i2(v2) = C(2); i3(v2) = C(3); i4(v2) = C(4); i5(v2) = C(5); end % PLOT SECTION plot(vplot,1000*i1,vplot,1000*i2, vplot,1000*i3, vplot,1000*i4, vplot,1000*i5 ),... ylabel('Resitor Current(mA)'),xlabel('Supply-2 Potential (V)'),... title('Resistor Network currents'), grid, legend('i1', 'i2', 'i3', 'i4', 'i5')

ENGR-25_Plot_Model-2.ppt 13 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Prob4_31_KVL_KCL_Calc.m - 1 % Bruce Mayer, PE * 08Jul05 % ENGR25 * Problem 4-31 % file = Prob4_31_KCL_KVL.m % % INPUT SECTION %R1 = 5; R2= 100; R3 = 200; R4 = 150; % SingleOhm case R5 = 250e3; R1 = 5e3; R2= 100e3; R3 = 200e3; R4 = 150e3; % kOhm case % Coeff Matrix A v1 = 100; % in Volts A = [R1 0 0 R4 0; 0 R2 0 -R4 R5; 0 0 R3 0 - R5; ; ]; % % LOW Loop % Initialize Vars v2 = 40; C = [0;0;0;0;0]; % use element-by-element logic test on while % Must account for NEGATIVE Currents while abs(C) < 0.001*[1;1;1;1;1] % Constraint Col Vector V V = [v1; 0; -v2; 0; 0]; % find solution vector for currents, C C = A\V; % Collect last conforming Value-set v2_lo = v2; i1_lo = C(1); i2_lo = C(2); i3_lo = C(3); i4_lo = C(4); i5_lo = C(5); %increment v2 by 10 mV DOWN v2 = v ; end %display "lo" vars v2_lo display('currents in mA') i1_low = 1000*i1_lo i2_low = 1000*i2_lo i3_low = 1000*i3_lo i4_low = 1000*i4_lo i5_low = 1000*i5_lo %

ENGR-25_Plot_Model-2.ppt 14 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods Prob4_37_KVL_KCL_Calc.m - 2 % HIGH Loop % Initialize Vars v2 = 300; C = [0;0;0;0;0]; % use element-by-element logic test on while % Must account for NEGATIVE Currents while abs(C) < 0.001*[1;1;1;1;1] %Constraint Vector V V = [v1; 0; -v2; 0; 0]; % find soltion vector for currents, C C = A\V; % Collect last conforming set v2_hi = v2; i1_hi = C(1); i2_hi = C(2); i3_hi = C(3); i4_hi = C(4); i5_hi = C(5); %increment v2 by 10 mV UP v2 = v ; end %display "hi" vars v2_hi display('currents in mA') i1_high = 1000*i1_hi i2_high = 1000*i2_hi i3_high = 1000*i3_hi i4_high = 1000*i4_hi i5_high = 1000*i5_hi