ANOVA & sib analysis. basics of ANOVA - revision application to sib analysis intraclass correlation coefficient.

Slides:



Advertisements
Similar presentations
Multiple-choice question
Advertisements

Topic 12: Multiple Linear Regression
Tests of Significance for Regression & Correlation b* will equal the population parameter of the slope rather thanbecause beta has another meaning with.
Statistical Analysis Overview I Session 2 Peg Burchinal Frank Porter Graham Child Development Institute, University of North Carolina-Chapel Hill.
ANCOVA Workings of ANOVA & ANCOVA ANCOVA, Semi-Partial correlations, statistical control Using model plotting to think about ANCOVA & Statistical control.
Lecture 4: Basic Designs for Estimation of Genetic Parameters
Outline: 1) Basics 2) Means and Values (Ch 7): summary 3) Variance (Ch 8): summary 4) Resemblance between relatives 5) Homework (8.3)
LINEAR REGRESSION: Evaluating Regression Models Overview Assumptions for Linear Regression Evaluating a Regression Model.
LINEAR REGRESSION: Evaluating Regression Models. Overview Assumptions for Linear Regression Evaluating a Regression Model.
Between Groups & Within-Groups ANOVA
QUANTITATIVE DATA ANALYSIS
Independent Sample T-test Formula
Lecture 4: Heritability. Heritability Narrow vs. board sense Narrow sense: h 2 = V A /V P Board sense: H 2 = V G /V P Slope of midparent-offspring regression.
ANCOVA Workings of ANOVA & ANCOVA ANCOVA, Semi-Partial correlations, statistical control Using model plotting to think about ANCOVA & Statistical control.
Lecture 4: Basic Designs for Estimation of Genetic Parameters.
Analysis of Covariance Goals: 1)Reduce error variance. 2)Remove sources of bias from experiment. 3)Obtain adjusted estimates of population means.
Lesson #23 Analysis of Variance. In Analysis of Variance (ANOVA), we have: H 0 :  1 =  2 =  3 = … =  k H 1 : at least one  i does not equal the others.
Correlation Patterns. Correlation Coefficient A statistical measure of the covariation or association between two variables. Are dollar sales.
Correlation. Two variables: Which test? X Y Contingency analysis t-test Logistic regression Correlation Regression.
Lecture 9: One Way ANOVA Between Subjects
Linear Regression and Correlation Explanatory and Response Variables are Numeric Relationship between the mean of the response variable and the level of.
Review Guess the correlation. A.-2.0 B.-0.9 C.-0.1 D.0.1 E.0.9.
Correlation and Regression
Equations in Simple Regression Analysis. The Variance.
Calculations of Reliability We are interested in calculating the ICC –First step: Conduct a single-factor, within-subjects (repeated measures) ANOVA –This.
Chapter 11 HYPOTHESIS TESTING USING THE ONE-WAY ANALYSIS OF VARIANCE.
Chi-Square as a Statistical Test Chi-square test: an inferential statistics technique designed to test for significant relationships between two variables.
Completing the ANOVA From the Summary Statistics.
© 2014 by Pearson Higher Education, Inc Upper Saddle River, New Jersey All Rights Reserved HLTH 300 Biostatistics for Public Health Practice, Raul.
Copyright © 2004 Pearson Education, Inc.
Testing Hypotheses about Differences among Several Means.
1 Review of ANOVA & Inferences About The Pearson Correlation Coefficient Heibatollah Baghi, and Mastee Badii.
Education 793 Class Notes Presentation 10 Chi-Square Tests and One-Way ANOVA.
One-Way ANOVA ANOVA = Analysis of Variance This is a technique used to analyze the results of an experiment when you have more than two groups.
Solutions to Tutorial 5 Problems Source Sum of Squares df Mean Square F-test Regression Residual Total ANOVA Table Variable.
Chapter 14 Repeated Measures and Two Factor Analysis of Variance
Previous Lecture: Phylogenetics. Analysis of Variance This Lecture Judy Zhong Ph.D.
Analysis of Variance ANOVA Anwar Ahmad. ANOVA Samples from different populations (treatment groups) Any difference among the population means? Null hypothesis:
Correlations Between Characters In “Genetics and Analysis of Quantitative traits” by Lynch, M. and Walsh, B. Presented Sansak Nakavisut.
Chapter Seventeen. Figure 17.1 Relationship of Hypothesis Testing Related to Differences to the Previous Chapter and the Marketing Research Process Focus.
Correlated characters Sanja Franic VU University Amsterdam 2008.
MARKETING RESEARCH CHAPTER 17: Hypothesis Testing Related to Differences.
ONE WAY ANALYSIS OF VARIANCE ANOVA o It is used to investigate the effect of one factor which occurs at h levels (≥3). Example: Suppose that we wish to.
Chapter 13 Repeated-Measures and Two-Factor Analysis of Variance
Lecture 21: Quantitative Traits I Date: 11/05/02  Review: covariance, regression, etc  Introduction to quantitative genetics.
Lecture 22: Quantitative Traits II
ANCOVA Workings of ANOVA & ANCOVA ANCOVA, partial correlations & multiple regression Using model plotting to think about ANCOVA & Statistical control Homogeneity.
Significance Tests for Regression Analysis. A. Testing the Significance of Regression Models The first important significance test is for the regression.
Continuous Outcome, Dependent Variable (Y-Axis) Child’s Height
Factorial BG ANOVA Psy 420 Ainsworth. Topics in Factorial Designs Factorial? Crossing and Nesting Assumptions Analysis Traditional and Regression Approaches.
Copyright © 2008 by Nelson, a division of Thomson Canada Limited Chapter 18 Part 5 Analysis and Interpretation of Data DIFFERENCES BETWEEN GROUPS AND RELATIONSHIPS.
Chapter 15 Analyzing Quantitative Data. Levels of Measurement Nominal measurement Involves assigning numbers to classify characteristics into categories.
The “Big Picture” (from Heath 1995). Simple Linear Regression.
Psychology 202a Advanced Psychological Statistics October 27, 2015.
Chapter 14 Repeated Measures and Two Factor Analysis of Variance PowerPoint Lecture Slides Essentials of Statistics for the Behavioral Sciences Seventh.
Education 793 Class Notes ANCOVA Presentation 11.
Breeding Value Estimation Chapter 7. Single information source What is the breeding value of this cow for milk production? A cow produces 9000 kg milk.
Partitioning of variance – Genetic models
REGRESSION G&W p
Statistics for the Social Sciences
9/19/2018 ST3131, Lecture 6.
Analysis of Variance and Regression Using Dummy Variables
LEARNING OUTCOMES After studying this chapter, you should be able to
Chapter 13 Group Differences
Review Questions III Compare and contrast the components of an individual score for a between-subject design (Completely Randomized Design) and a Randomized-Block.
Lecture 3: Resemblance Between Relatives
UNIT V CHISQUARE DISTRIBUTION
Introduction to Regression
S.M.JOSHI COLLEGE, HADAPSAR
Presentation transcript:

ANOVA & sib analysis

basics of ANOVA - revision application to sib analysis intraclass correlation coefficient

- analysis of variance (ANOVA) is a way of comparing the ratio of systematic variance to unsystematic variance in a study

- analysis of variance (ANOVA) is a way of comparing the ratio of systematic variance to unsystematic variance in a study ANOVA as regression

- analysis of variance (ANOVA) is a way of comparing the ratio of systematic variance to unsystematic variance in a study ANOVA as regression - research question: does exposure to content of Falconer & Mackay (1996) increase knowledge of quantitative genetics?

- analysis of variance (ANOVA) is a way of comparing the ratio of systematic variance to unsystematic variance in a study ANOVA as regression - research question: does exposure to content of Falconer & Mackay (1996) increase knowledge of quantitative genetics? Person Condition Nothing (N) Lectures (L)Lectures + book (LB) person person 2179 person 3168 person person 5157 μ N = 1μ L = 5μ LB = 9μ = 5

- analysis of variance (ANOVA) is a way of comparing the ratio of systematic variance to unsystematic variance in a study ANOVA as regression - research question: does exposure to content of Falconer & Mackay (1996) increase knowledge of quantitative genetics? Person Condition Nothing (N) Lectures (L)Lectures + book (LB) person person 2179 person 3168 person person 5157 μ N = 1μ L = 5μ LB = 9μ = 5 person score

- analysis of variance (ANOVA) is a way of comparing the ratio of systematic variance to unsystematic variance in a study ANOVA as regression - research question: does exposure to content of Falconer & Mackay (1996) increase knowledge of quantitative genetics? outcome ij = model + error ij Person Condition Nothing (N) Lectures (L)Lectures + book (LB) person person 2179 person 3168 person person 5157 μ N = 1μ L = 5μ LB = 9μ = 5 person score

Dummy coding:

Condition Dummy variable Dummy1 (lec) Dummy2 (lecbook) Nothing (N)00 Lectures (L)10 Lectures + book (LB)01 Dummy coding:

outcome ij = model + error ij Condition Dummy variable Dummy1 (lec) Dummy2 (lecbook) Nothing (N)00 Lectures (L)10 Lectures + book (LB)01 Dummy coding:

outcome ij = model + error ij knowledge ij = b 0 + b 1 *dummy1 j + b 2 *dummy2 j + ε ij i = 1, … N, N = number of people per condition = 5 j = 1, … M, M = number of conditions = 3 Condition Dummy variable Dummy1 (lec) Dummy2 (lecbook) Nothing (N)00 Lectures (L)10 Lectures + book (LB)01 Dummy coding:

outcome ij = model + error ij knowledge ij = b 0 + b 1 *dummy1 j + b 2 *dummy2 j + ε ij i = 1, … N, N = number of people per condition = 5 j = 1, … M, M = number of conditions = 3 knowledge i1 = b 0 + b 1 *dummy1 1 + b 2 *dummy2 1 + ε i1 Condition Dummy variable Dummy1 (lec) Dummy2 (lecbook) Nothing (N)00 Lectures (L)10 Lectures + book (LB)01 Dummy coding:

outcome ij = model + error ij knowledge ij = b 0 + b 1 *dummy1 j + b 2 *dummy2 j + ε ij i = 1, … N, N = number of people per condition = 5 j = 1, … M, M = number of conditions = 3 knowledge i1 = b 0 + b 1 *dummy1 1 + b 2 *dummy2 1 + ε i1 = b 0 + b 1 *0 + b 2 *0 + ε i1 Condition Dummy variable Dummy1 (lec) Dummy2 (lecbook) Nothing (N)00 Lectures (L)10 Lectures + book (LB)01 Dummy coding:

outcome ij = model + error ij knowledge ij = b 0 + b 1 *dummy1 j + b 2 *dummy2 j + ε ij i = 1, … N, N = number of people per condition = 5 j = 1, … M, M = number of conditions = 3 knowledge i1 = b 0 + b 1 *dummy1 1 + b 2 *dummy2 1 + ε i1 = b 0 + b 1 *0 + b 2 *0 + ε i1 = b 0 + ε i1 Condition Dummy variable Dummy1 (lec) Dummy2 (lecbook) Nothing (N)00 Lectures (L)10 Lectures + book (LB)01 Dummy coding:

outcome ij = model + error ij knowledge ij = b 0 + b 1 *dummy1 j + b 2 *dummy2 j + ε ij i = 1, … N, N = number of people per condition = 5 j = 1, … M, M = number of conditions = 3 knowledge i1 = b 0 + b 1 *dummy1 1 + b 2 *dummy2 1 + ε i1 = b 0 + b 1 *0 + b 2 *0 + ε i1 = b 0 + ε i1 knowledge i2 = b 0 + b 1 *dummy1 2 + b 2 *dummy2 2 + ε i2 Condition Dummy variable Dummy1 (lec) Dummy2 (lecbook) Nothing (N)00 Lectures (L)10 Lectures + book (LB)01 Dummy coding:

outcome ij = model + error ij knowledge ij = b 0 + b 1 *dummy1 j + b 2 *dummy2 j + ε ij i = 1, … N, N = number of people per condition = 5 j = 1, … M, M = number of conditions = 3 knowledge i1 = b 0 + b 1 *dummy1 1 + b 2 *dummy2 1 + ε i1 = b 0 + b 1 *0 + b 2 *0 + ε i1 = b 0 + ε i1 knowledge i2 = b 0 + b 1 *dummy1 2 + b 2 *dummy2 2 + ε i2 = b 0 + b 1 *1 + b 2 *0 + ε i2 Condition Dummy variable Dummy1 (lec) Dummy2 (lecbook) Nothing (N)00 Lectures (L)10 Lectures + book (LB)01 Dummy coding:

outcome ij = model + error ij knowledge ij = b 0 + b 1 *dummy1 j + b 2 *dummy2 j + ε ij i = 1, … N, N = number of people per condition = 5 j = 1, … M, M = number of conditions = 3 knowledge i1 = b 0 + b 1 *dummy1 1 + b 2 *dummy2 1 + ε i1 = b 0 + b 1 *0 + b 2 *0 + ε i1 = b 0 + ε i1 knowledge i2 = b 0 + b 1 *dummy1 2 + b 2 *dummy2 2 + ε i2 = b 0 + b 1 *1 + b 2 *0 + ε i2 = b 0 + b 1 + ε i2 Condition Dummy variable Dummy1 (lec) Dummy2 (lecbook) Nothing (N)00 Lectures (L)10 Lectures + book (LB)01 Dummy coding:

outcome ij = model + error ij knowledge ij = b 0 + b 1 *dummy1 j + b 2 *dummy2 j + ε ij i = 1, … N, N = number of people per condition = 5 j = 1, … M, M = number of conditions = 3 knowledge i1 = b 0 + b 1 *dummy1 1 + b 2 *dummy2 1 + ε i1 = b 0 + b 1 *0 + b 2 *0 + ε i1 = b 0 + ε i1 knowledge i2 = b 0 + b 1 *dummy1 2 + b 2 *dummy2 2 + ε i2 = b 0 + b 1 *1 + b 2 *0 + ε i2 = b 0 + b 1 + ε i2 knowledge i3 = b 0 + b 1 *dummy1 3 + b 2 *dummy2 3 + ε i3 Condition Dummy variable Dummy1 (lec) Dummy2 (lecbook) Nothing (N)00 Lectures (L)10 Lectures + book (LB)01 Dummy coding:

outcome ij = model + error ij knowledge ij = b 0 + b 1 *dummy1 j + b 2 *dummy2 j + ε ij i = 1, … N, N = number of people per condition = 5 j = 1, … M, M = number of conditions = 3 knowledge i1 = b 0 + b 1 *dummy1 1 + b 2 *dummy2 1 + ε i1 = b 0 + b 1 *0 + b 2 *0 + ε i1 = b 0 + ε i1 knowledge i2 = b 0 + b 1 *dummy1 2 + b 2 *dummy2 2 + ε i2 = b 0 + b 1 *1 + b 2 *0 + ε i2 = b 0 + b 1 + ε i2 knowledge i3 = b 0 + b 1 *dummy1 3 + b 2 *dummy2 3 + ε i3 = b 0 + b 1 *0 + b 2 *1 + ε i3 = b 0 + b 2 + ε i3 Condition Dummy variable Dummy1 (lec) Dummy2 (lecbook) Nothing (N)00 Lectures (L)10 Lectures + book (LB)01 Dummy coding:

outcome ij = model + error ij knowledge ij = b 0 + b 1 *dummy1 j + b 2 *dummy2 j + ε ij knowledge i1 = b 0 + b 1 *dummy1 1 + b 2 *dummy2 1 + ε i1 = b 0 + b 1 *0 + b 2 *0 + ε i1 = b 0 + ε i1 knowledge i2 = b 0 + b 1 *dummy1 2 + b 2 *dummy2 2 + ε i2 = b 0 + b 1 *1 + b 2 *0 + ε i2 = b 0 + b 1 + ε i2 knowledge i3 = b 0 + b 1 *dummy1 3 + b 2 *dummy2 3 + ε i3 = b 0 + b 1 *0 + b 2 *1 + ε i3 = b 0 + b 2 + ε i3 Condition Dummy variable Dummy1 (lec) Dummy2 (lecbook) Nothing (N)00 Lectures (L)10 Lectures + book (LB)01 Therefore: Dummy coding:

outcome ij = model + error ij knowledge ij = b 0 + b 1 *dummy1 j + b 2 *dummy2 j + ε ij knowledge i1 = b 0 + b 1 *dummy1 1 + b 2 *dummy2 1 + ε i1 = b 0 + b 1 *0 + b 2 *0 + ε i1 = b 0 + ε i1 knowledge i2 = b 0 + b 1 *dummy1 2 + b 2 *dummy2 2 + ε i2 = b 0 + b 1 *1 + b 2 *0 + ε i2 = b 0 + b 1 + ε i2 knowledge i3 = b 0 + b 1 *dummy1 3 + b 2 *dummy2 3 + ε i3 = b 0 + b 1 *0 + b 2 *1 + ε i3 = b 0 + b 2 + ε i3 Condition Dummy variable Dummy1 (lec) Dummy2 (lecbook) Nothing (N)00 Lectures (L)10 Lectures + book (LB)01 Therefore: → μ condition1 = b 0 b 0 is the mean of condition 1 (N) Dummy coding:

outcome ij = model + error ij knowledge ij = b 0 + b 1 *dummy1 j + b 2 *dummy2 j + ε ij knowledge i1 = b 0 + b 1 *dummy1 1 + b 2 *dummy2 1 + ε i1 = b 0 + b 1 *0 + b 2 *0 + ε i1 = b 0 + ε i1 knowledge i2 = b 0 + b 1 *dummy1 2 + b 2 *dummy2 2 + ε i2 = b 0 + b 1 *1 + b 2 *0 + ε i2 = b 0 + b 1 + ε i2 knowledge i3 = b 0 + b 1 *dummy1 3 + b 2 *dummy2 3 + ε i3 = b 0 + b 1 *0 + b 2 *1 + ε i3 = b 0 + b 2 + ε i3 Condition Dummy variable Dummy1 (lec) Dummy2 (lecbook) Nothing (N)00 Lectures (L)10 Lectures + book (LB)01 Therefore: → μ condition1 = b 0 b 0 is the mean of condition 1 (N) → μ condition2 = b 0 + b 1 = μ condition1 + b 1 μ condition2 - μ condition1 = b 1 Dummy coding:

outcome ij = model + error ij knowledge ij = b 0 + b 1 *dummy1 j + b 2 *dummy2 j + ε ij knowledge i1 = b 0 + b 1 *dummy1 1 + b 2 *dummy2 1 + ε i1 = b 0 + b 1 *0 + b 2 *0 + ε i1 = b 0 + ε i1 knowledge i2 = b 0 + b 1 *dummy1 2 + b 2 *dummy2 2 + ε i2 = b 0 + b 1 *1 + b 2 *0 + ε i2 = b 0 + b 1 + ε i2 knowledge i3 = b 0 + b 1 *dummy1 3 + b 2 *dummy2 3 + ε i3 = b 0 + b 1 *0 + b 2 *1 + ε i3 = b 0 + b 2 + ε i3 Condition Dummy variable Dummy1 (lec) Dummy2 (lecbook) Nothing (N)00 Lectures (L)10 Lectures + book (LB)01 Therefore: → μ condition1 = b 0 b 0 is the mean of condition 1 (N) → μ condition2 = b 0 + b 1 = μ condition1 + b 1 b 1 is the difference in means of μ condition2 - μ condition1 = b 1 condition 1 (N) and condition 2 (L) Dummy coding:

outcome ij = model + error ij knowledge ij = b 0 + b 1 *dummy1 j + b 2 *dummy2 j + ε ij knowledge i1 = b 0 + b 1 *dummy1 1 + b 2 *dummy2 1 + ε i1 = b 0 + b 1 *0 + b 2 *0 + ε i1 = b 0 + ε i1 knowledge i2 = b 0 + b 1 *dummy1 2 + b 2 *dummy2 2 + ε i2 = b 0 + b 1 *1 + b 2 *0 + ε i2 = b 0 + b 1 + ε i2 knowledge i3 = b 0 + b 1 *dummy1 3 + b 2 *dummy2 3 + ε i3 = b 0 + b 1 *0 + b 2 *1 + ε i3 = b 0 + b 2 + ε i3 Condition Dummy variable Dummy1 (lec) Dummy2 (lecbook) Nothing (N)00 Lectures (L)10 Lectures + book (LB)01 Therefore: → μ condition1 = b 0 b 0 is the mean of condition 1 (N) → μ condition2 = b 0 + b 1 = μ condition1 + b 1 b 1 is the difference in means of μ condition2 - μ condition1 = b 1 condition 1 (N) and condition 2 (L) → μ condition3 = b 0 + b 2 = μ condition1 + b 2 μ condition3 - μ condition1 = b 2 Dummy coding:

outcome ij = model + error ij knowledge ij = b 0 + b 1 *dummy1 j + b 2 *dummy2 j + ε ij knowledge i1 = b 0 + b 1 *dummy1 1 + b 2 *dummy2 1 + ε i1 = b 0 + b 1 *0 + b 2 *0 + ε i1 = b 0 + ε i1 knowledge i2 = b 0 + b 1 *dummy1 2 + b 2 *dummy2 2 + ε i2 = b 0 + b 1 *1 + b 2 *0 + ε i2 = b 0 + b 1 + ε i2 knowledge i3 = b 0 + b 1 *dummy1 3 + b 2 *dummy2 3 + ε i3 = b 0 + b 1 *0 + b 2 *1 + ε i3 = b 0 + b 2 + ε i3 Condition Dummy variable Dummy1 (lec) Dummy2 (lecbook) Nothing (N)00 Lectures (L)10 Lectures + book (LB)01 Therefore: → μ condition1 = b 0 b 0 is the mean of condition 1 (N) → μ condition2 = b 0 + b 1 = μ condition1 + b 1 b 1 is the difference in means of μ condition2 - μ condition1 = b 1 condition 1 (N) and condition 2 (L) → μ condition3 = b 0 + b 2 = μ condition1 + b 2 b 2 is the difference in means of μ condition3 - μ condition1 = b 2 condition 1 (N) and condition 3 (LB) Dummy coding:

Person Condition Nothing (N) Lectures (L)Lectures + book (LB) person person 2179 person 3168 person person 5157 μ N = 1μ L = 5μ LB = 9μ = 5 μNμN μLμL μ LB μ

Person Condition Nothing (N) Lectures (L)Lectures + book (LB) person person 2179 person 3168 person person 5157 μ N = 1μ L = 5μ LB = 9μ = 5 μNμN μLμL μ LB μ b0b0 b1b1 b2b2

Person Condition Nothing (N) Lectures (L)Lectures + book (LB) person person 2179 person 3168 person person 5157 μ N = 1μ L = 5μ LB = 9μ = 5 μNμN μLμL μ LB μ

Person Condition Nothing (N) Lectures (L)Lectures + book (LB) person person 2179 person 3168 person person 5157 μ N = 1μ L = 5μ LB = 9μ = 5 μNμN μLμL μ LB μ Sums of squares

Person Condition Nothing (N) Lectures (L)Lectures + book (LB) person person 2179 person 3168 person person 5157 μ N = 1μ L = 5μ LB = 9μ = 5 μNμN μLμL μ LB μ Sums of squares SS T = Σ(score ij - μ) 2

Person Condition Nothing (N) Lectures (L)Lectures + book (LB) person person 2179 person 3168 person person 5157 μ N = 1μ L = 5μ LB = 9μ = 5 μNμN μLμL μ LB μ Sums of squares SS T = Σ(score ij - μ) 2

Person Condition Nothing (N) Lectures (L)Lectures + book (LB) person person 2179 person 3168 person person 5157 μ N = 1μ L = 5μ LB = 9μ = 5 μNμN μLμL μ LB μ Sums of squares SS T = Σ(score ij - μ) 2 SS B = ΣN j (μ j - μ) 2

Person Condition Nothing (N) Lectures (L)Lectures + book (LB) person person 2179 person 3168 person person 5157 μ N = 1μ L = 5μ LB = 9μ = 5 μNμN μLμL μ LB μ Sums of squares SS T = Σ(score ij - μ) 2 SS B = ΣN j (μ j - μ) 2

Person Condition Nothing (N) Lectures (L)Lectures + book (LB) person person 2179 person 3168 person person 5157 μ N = 1μ L = 5μ LB = 9μ = 5 μNμN μLμL μ LB μ Sums of squares SS T = Σ(score ij - μ) 2 SS B = ΣN j (μ j - μ) 2 SS W = Σ(score ij - μ j ) 2

Person Condition Nothing (N) Lectures (L)Lectures + book (LB) person person 2179 person 3168 person person 5157 μ N = 1μ L = 5μ LB = 9μ = 5 μNμN μLμL μ LB μ Sums of squares SS T = Σ(score ij - μ) 2 SS B = ΣN j (μ j - μ) 2 SS W = Σ(score ij - μ j ) 2

Person Condition Nothing (N) Lectures (L)Lectures + book (LB) person person 2179 person 3168 person person 5157 μ N = 1μ L = 5μ LB = 9μ = 5 μNμN μLμL μ LB μ Sums of squares SS T = Σ(score ij - μ) 2 SS B = ΣN j (μ j - μ) 2 SS W = Σ(score ij - μ j ) 2 SS T = SS B + SS W

Person Condition Nothing (N) Lectures (L)Lectures + book (LB) person person 2179 person 3168 person person 5157 μ N = 1μ L = 5μ LB = 9μ = 5 μNμN μLμL μ LB μ Sums of squares SS T = Σ(score ij - μ) 2 SS B = ΣN j (μ j - μ) 2 SS W = Σ(score ij - μ j ) 2 SS T = SS B + SS W Degrees of freedom df T = MN - 1 df B = M – 1 df W = M(N – 1) N = number of people per condition M = number of conditions

Person Condition Nothing (N) Lectures (L)Lectures + book (LB) person person 2179 person 3168 person person 5157 μ N = 1μ L = 5μ LB = 9μ = 5 μNμN μLμL μ LB μ Sums of squares SS T = Σ(score ij - μ) 2 SS B = ΣN j (μ j - μ) 2 SS W = Σ(score ij - μ j ) 2 SS T = SS B + SS W Degrees of freedom df T = MN - 1 df B = M – 1 df W = M(N – 1) Mean squares MS T = SS T /df T MS B = SS B /df B MS W = SS W /df W N = number of people per condition M = number of conditions

Person Condition Nothing (N) Lectures (L)Lectures + book (LB) person person 2179 person 3168 person person 5157 μ N = 1μ L = 5μ LB = 9μ = 5 μNμN μLμL μ LB μ Sums of squares SS T = Σ(score ij - μ) 2 SS B = ΣN j (μ j - μ) 2 SS W = Σ(score ij - μ j ) 2 SS T = SS B + SS W Degrees of freedom df T = MN - 1 df B = M – 1 df W = M(N – 1) Mean squares MS T = SS T /df T MS B = SS B /df B MS W = SS W /df W N = number of people per condition M = number of conditions F-ratio F = MS B /MS W = MS model /MS error

Sib analysis

Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 - number of males (sires) each mated to number of females (dams)

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 - number of males (sires) each mated to number of females (dams) - mating and selection of sires and dams → random

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 - number of males (sires) each mated to number of females (dams) - mating and selection of sires and dams → random - thus: population of full sibs (same father, same mother; same cell in table) and half sibs (same father, different mother; same row in table)

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 - number of males (sires) each mated to number of females (dams) - mating and selection of sires and dams → random - thus: population of full sibs (same father, same mother; same cell in table) and half sibs (same father, different mother; same row in table) - data: measurements of all offspring

Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 μ sire1 μ dam1sire1 score offspring1dam1sire1 Sib analysis - example with 3 sires:

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 ANOVA: Partitioning the phenotypic variance (V P ):

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 ANOVA: Partitioning the phenotypic variance (V P ): - between-sire component

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 ANOVA: Partitioning the phenotypic variance (V P ): - between-sire component - component attributable to differences between the progeny of different males

Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 μ sire1 Sib analysis μ sire2 μ sire3

Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 μ sire1 Sib analysis μ sire2 μ sire3

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 ANOVA: Partitioning the phenotypic variance (V P ): - between-sire component

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 ANOVA: Partitioning the phenotypic variance (V P ): - between-sire component - between-dam, within-sire component

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 ANOVA: Partitioning the phenotypic variance (V P ): - between-sire component - between-dam, within-sire component - component attributable to differences between progeny of females mated to same male

Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 μ sire1 Sib analysis μ sire2 μ sire3

Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 μ sire1 Sib analysis μ sire2 μ sire3

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 ANOVA: Partitioning the phenotypic variance (V P ): - between-sire component - between-dam, within-sire component

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 ANOVA: Partitioning the phenotypic variance (V P ): - between-sire component - between-dam, within-sire component - within-progeny component

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 ANOVA: Partitioning the phenotypic variance (V P ): - between-sire component - between-dam, within-sire component - within-progeny component - component attributable to differences between offspring of the same female

Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 μ sire1 Sib analysis μ sire2 μ sire3

Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 μ sire1 Sib analysis μ sire2 μ sire3

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 ANOVA: Partitioning the phenotypic variance (V P ): - between-sire component - between-dam, within-sire component - within-progeny component

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 ANOVA: Partitioning the phenotypic variance (V P ): - between-sire component - between-dam, within-sire component - within-progeny component

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 ANOVA: Partitioning the phenotypic variance (V P ): - between-sire component (σ 2 S ) - between-dam, within-sire component (σ 2 D ) - within-progeny component (σ 2 W )

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 ANOVA: Partitioning the phenotypic variance (V P ): σ 2 T = σ 2 S + σ 2 D + σ 2 W - between-sire component (σ 2 S ) - between-dam, within-sire component (σ 2 D ) - within-progeny component (σ 2 W )

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 ANOVA: Partitioning the phenotypic variance (V P ): - between-sire component (σ 2 S ) = variance between means of half-sib families = cov HS = ¼V A - between-dam, within-sire component (σ 2 D ) - within-progeny component (σ 2 W ) σ 2 T = σ 2 S + σ 2 D + σ 2 W

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 ANOVA: Partitioning the phenotypic variance (V P ): - between-sire component (σ 2 S ) = variance between means of half-sib families = cov HS = ¼V A - between-dam, within-sire component (σ 2 D ) - within-progeny component (σ 2 W ) σ 2 T = σ 2 S + σ 2 D + σ 2 W

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 ANOVA: Partitioning the phenotypic variance (V P ): - between-sire component (σ 2 S ) = variance between means of half-sib families = cov HS = ¼V A - between-dam, within-sire component (σ 2 D ) - within-progeny component (σ 2 W ) = total variance minus variance between groups = V P – cov FS = ½V A + ¾V D + V Ew σ 2 T = σ 2 S + σ 2 D + σ 2 W

Sib analysis Sire 1 Sire 2 Sire 3 Sire 4 Sire 5 Sire 6 Sire 7 Sire 8 ANOVA: Partitioning the phenotypic variance (V P ): - between-sire component (σ 2 S ) = variance between means of half-sib families = cov HS = ¼V A - between-dam, within-sire component (σ 2 D ) = σ 2 T - σ 2 S - σ 2 W = cov FS – cov HS = ¼V A + ¼V D + V Ec - within-progeny component (σ 2 W ) = total variance minus variance between groups = V P – cov FS = ½V A + ¾V D + V Ew σ 2 T = σ 2 S + σ 2 D + σ 2 W

Question: Why is any between group variance component equal to the covariance of the members of the groups?

Question: Why is any between group variance component equal to the covariance of the members of the groups? Conceptually: If all offspring in a group have relatively high values, the mean value for that group will also be relatively high. Conversely, when all members of a group have relatively low values, the mean for that group will be relatively low.

Question: Why is any between group variance component equal to the covariance of the members of the groups? Conceptually: If all offspring in a group have relatively high values, the mean value for that group will also be relatively high. Conversely, when all members of a group have relatively low values, the mean for that group will be relatively low. Hence, the greater the correlation, the greater will be the variability among the means of the groups (i.e., between-groups variability) as a proportion of the total variability, and the smaller will be the proportion of total variability inside the groups (i.e., within-groups variability).

Question: Why is any between group variance component equal to the covariance of the members of the groups? Conceptually: If all offspring in a group have relatively high values, the mean value for that group will also be relatively high. Conversely, when all members of a group have relatively low values, the mean for that group will be relatively low. Hence, the greater the correlation, the greater will be the variability among the means of the groups (i.e., between-groups variability) as a proportion of the total variability, and the smaller will be the proportion of total variability inside the groups (i.e., within-groups variability). Computationally: We can illustrate this using the intraclass correlation coefficient (ICC).

Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = not a nested design -> each sire mated to only 1 dam -> families of full sibs

Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = 6.5 μ s1 μ s2 μ s3 μ

Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = 6.5 μ s1 μ s2 μ s3 μ σ 2 s = Σ(μ Si - μ) 2 /df s = [N 1 (μ s1 - μ) 2 + N 2 (μ s2 - μ) 2 + N 3 (μ s3 - μ) 2 ]/(3-1) = [4*(2.5 – 6.5) 2 + 4*(6.5 – 6.5) 2 + 4*(10.5 – 6.5) 2 ]/2 = (4* *0 + 4*4 2 )/2 = 64

σ 2 s = Σ(μ Si - μ) 2 /df s = [N 1 (μ s1 - μ) 2 + N 2 (μ s2 - μ) 2 + N 3 (μ s3 - μ) 2 ]/(3-1) = [4*(2.5 – 6.5) 2 + 4*(6.5 – 6.5) 2 + 4*(10.5 – 6.5) 2 ]/2 = (4* *0 + 4*4 2 )/2 = 64 - this is the variance between the means of 3 groups, or the between-group variance component μ s1 μ s2 μ s3 μ Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = 6.5

σ 2 s = Σ(μ Si - μ) 2 /df s = [N 1 (μ s1 - μ) 2 + N 2 (μ s2 - μ) 2 + N 3 (μ s3 - μ) 2 ]/(3-1) = [4*(2.5 – 6.5) 2 + 4*(6.5 – 6.5) 2 + 4*(10.5 – 6.5) 2 ]/2 = (4* *0 + 4*4 2 )/2 = 64 - this is the variance between the means of 3 groups, or the between-group variance component - how does the magnitude of this variance component relate to the covariance within the groups? Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = 6.5 μ s1 μ s2 μ s3 μ

Families of sibs σ 2 s = Σ(μ Si - μ) 2 /df s = [N 1 (μ s1 - μ) 2 + N 2 (μ s2 - μ) 2 + N 3 (μ s3 - μ) 2 ]/(3-1) = [4*(2.5 – 6.5) 2 + 4*(6.5 – 6.5) 2 + 4*(10.5 – 6.5) 2 ]/2 = (4* *0 + 4*4 2 )/2 = 64 - this is the variance between the means of 3 groups, or the between-group variance component - how does the magnitude of this variance component relate to the covariance within the groups? Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = 6.5 μ s1 μ s2 μ s3 μ

Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = 6.5 μ s1 μ s2 μ s3 μ σ 2 s = Σ(μ Si - μ) 2 /df s = [N 1 (μ s1 - μ) 2 + N 2 (μ s2 - μ) 2 + N 3 (μ s3 - μ) 2 ]/(3-1) = [4*(2.5 – 6.5) 2 + 4*(6.5 – 6.5) 2 + 4*(10.5 – 6.5) 2 ]/2 = (4* *0 + 4*4 2 )/2 = 64 - this is the variance between the means of 3 groups, or the between-group variance component - how does the magnitude of this variance component relate to the covariance within the groups?

Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = 6.5 σ 2 s = Σ(μ Si - μ) 2 /df s = [N 1 (μ s1 - μ) 2 + N 2 (μ s2 - μ) 2 + N 3 (μ s3 - μ) 2 ]/(3-1) = [4*(2.5 – 6.5) 2 + 4*(6.5 – 6.5) 2 + 4*(10.5 – 6.5) 2 ]/2 = (4* *0 + 4*4 2 )/2 = 64 - this is the variance between the means of 3 groups, or the between-group variance component - how does the magnitude of this variance component relate to the covariance within the groups? How to summarize the correlations between these 4 variables?

Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = 6.5 σ 2 s = Σ(μ Si - μ) 2 /df s = [N 1 (μ s1 - μ) 2 + N 2 (μ s2 - μ) 2 + N 3 (μ s3 - μ) 2 ]/(3-1) = [4*(2.5 – 6.5) 2 + 4*(6.5 – 6.5) 2 + 4*(10.5 – 6.5) 2 ]/2 = (4* *0 + 4*4 2 )/2 = 64 - this is the variance between the means of 3 groups, or the between-group variance component - how does the magnitude of this variance component relate to the covariance within the groups? How to summarize the correlations between these 4 variables? - use Pearson r (bivariately) to obtain a correlation matrix?

Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = 6.5 σ 2 s = Σ(μ Si - μ) 2 /df s = [N 1 (μ s1 - μ) 2 + N 2 (μ s2 - μ) 2 + N 3 (μ s3 - μ) 2 ]/(3-1) = [4*(2.5 – 6.5) 2 + 4*(6.5 – 6.5) 2 + 4*(10.5 – 6.5) 2 ]/2 = (4* *0 + 4*4 2 )/2 = 64 - this is the variance between the means of 3 groups, or the between-group variance component - how does the magnitude of this variance component relate to the covariance within the groups? How to summarize the correlations between these 4 variables? - use Pearson r (bivariately) to obtain a correlation matrix? - no, because a) we need a single measure of relationship

Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = 6.5 σ 2 s = Σ(μ Si - μ) 2 /df s = [N 1 (μ s1 - μ) 2 + N 2 (μ s2 - μ) 2 + N 3 (μ s3 - μ) 2 ]/(3-1) = [4*(2.5 – 6.5) 2 + 4*(6.5 – 6.5) 2 + 4*(10.5 – 6.5) 2 ]/2 = (4* *0 + 4*4 2 )/2 = 64 - this is the variance between the means of 3 groups, or the between-group variance component - how does the magnitude of this variance component relate to the covariance within the groups? How to summarize the correlations between these 4 variables? - use Pearson r (bivariately) to obtain a correlation matrix? - no, because a) we need a single measure of relationship b) r sensitive to reshuffling data in rows (thus, if we reshuffle data in rows, the row means [μ s ] and between-group variance component [σ 2 s ] would stay the same, while r would change)

Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = 6.5 σ 2 s = Σ(μ Si - μ) 2 /df s = [N 1 (μ s1 - μ) 2 + N 2 (μ s2 - μ) 2 + N 3 (μ s3 - μ) 2 ]/(3-1) = [4*(2.5 – 6.5) 2 + 4*(6.5 – 6.5) 2 + 4*(10.5 – 6.5) 2 ]/2 = (4* *0 + 4*4 2 )/2 = 64 - this is the variance between the means of 3 groups, or the between-group variance component - how does the magnitude of this variance component relate to the covariance within the groups? How to summarize the correlations between these 4 variables? - use Pearson r (bivariately) to obtain a correlation matrix? - no, because a) we need a single measure of relationship b) r sensitive to reshuffling data in rows (thus, if we reshuffle data in rows, the row means [μ s ] and between-group variance component [σ 2 s ] would stay the same, while r would change) - solution: ICC (intraclass correlation coefficient):

Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = 6.5 σ 2 s = Σ(μ Si - μ) 2 /df s = [N 1 (μ s1 - μ) 2 + N 2 (μ s2 - μ) 2 + N 3 (μ s3 - μ) 2 ]/(3-1) = [4*(2.5 – 6.5) 2 + 4*(6.5 – 6.5) 2 + 4*(10.5 – 6.5) 2 ]/2 = (4* *0 + 4*4 2 )/2 = 64 - this is the variance between the means of 3 groups, or the between-group variance component - how does the magnitude of this variance component relate to the covariance within the groups? How to summarize the correlations between these 4 variables? - use Pearson r (bivariately) to obtain a correlation matrix? - no, because a) we need a single measure of relationship b) r sensitive to reshuffling data in rows (thus, if we reshuffle data in rows, the row means [μ s ] and between-group variance component [σ 2 s ] would stay the same, while r would change) - solution: ICC (intraclass correlation coefficient): a) a single measure b) insensitive to reshuffling data in rows

Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = 6.5 σ 2 s = Σ(μ Si - μ) 2 /df s = [N 1 (μ s1 - μ) 2 + N 2 (μ s2 - μ) 2 + N 3 (μ s3 - μ) 2 ]/(3-1) = [4*(2.5 – 6.5) 2 + 4*(6.5 – 6.5) 2 + 4*(10.5 – 6.5) 2 ]/2 = (4* *0 + 4*4 2 )/2 = 64 ICC = σ 2 s /(σ 2 s + σ 2 w ) How to summarize the correlations between these 4 variables? - use Pearson r (bivariately) to obtain a correlation matrix? - no, because a) we need a single measure of relationship b) r sensitive to reshuffling data in rows (thus, if we reshuffle data in rows, the row means [μ s ] and between-group variance component [σ 2 s ] would stay the same, while r would change) - solution: ICC (intraclass correlation coefficient): a) a single measure b) insensitive to reshuffling data in rows

Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = 6.5 σ 2 s = Σ(μ Si - μ) 2 /df s = [N 1 (μ s1 - μ) 2 + N 2 (μ s2 - μ) 2 + N 3 (μ s3 - μ) 2 ]/(3-1) = [4*(2.5 – 6.5) 2 + 4*(6.5 – 6.5) 2 + 4*(10.5 – 6.5) 2 ]/2 = (4* *0 + 4*4 2 )/2 = 64 ICC = σ 2 s /(σ 2 s + σ 2 w ) σ 2 w = Σ(p ij - μ Si ) 2 /df w How to summarize the correlations between these 4 variables? - use Pearson r (bivariately) to obtain a correlation matrix? - no, because a) we need a single measure of relationship b) r sensitive to reshuffling data in rows (thus, if we reshuffle data in rows, the row means [μ s ] and between-group variance component [σ 2 s ] would stay the same, while r would change) - solution: ICC (intraclass correlation coefficient): a) a single measure b) insensitive to reshuffling data in rows

Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = 6.5 σ 2 s = Σ(μ Si - μ) 2 /df s = [N 1 (μ s1 - μ) 2 + N 2 (μ s2 - μ) 2 + N 3 (μ s3 - μ) 2 ]/(3-1) = [4*(2.5 – 6.5) 2 + 4*(6.5 – 6.5) 2 + 4*(10.5 – 6.5) 2 ]/2 = (4* *0 + 4*4 2 )/2 = 64 ICC = σ 2 s /(σ 2 s + σ 2 w ) σ 2 w = Σ(p ij - μ Si ) 2 /df w = [(p 11 - μ s1 ) 2 + (p 12 - μ s1 ) 2 + … + (p 21 – μ s2 ) 2 + … + (p 34 – μ s3 ) 2 ]/3(4-1) = 15/9 = 1.67 How to summarize the correlations between these 4 variables? - use Pearson r (bivariately) to obtain a correlation matrix? - no, because a) we need a single measure of relationship b) r sensitive to reshuffling data in rows (thus, if we reshuffle data in rows, the row means [μ s ] and between-group variance component [σ 2 s ] would stay the same, while r would change) - solution: ICC (intraclass correlation coefficient): a) a single measure b) insensitive to reshuffling data in rows

Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = 6.5 σ 2 s = Σ(μ Si - μ) 2 /df s = [N 1 (μ s1 - μ) 2 + N 2 (μ s2 - μ) 2 + N 3 (μ s3 - μ) 2 ]/(3-1) = [4*(2.5 – 6.5) 2 + 4*(6.5 – 6.5) 2 + 4*(10.5 – 6.5) 2 ]/2 = (4* *0 + 4*4 2 )/2 = 64 ICC = σ 2 s /(σ 2 s + σ 2 w ) = 64/( ) = 0.97 σ 2 w = Σ(p ij - μ Si ) 2 /df w = [(p 11 - μ s1 ) 2 + (p 12 - μ s1 ) 2 + … + (p 21 – μ s2 ) 2 + … + (p 34 – μ s3 ) 2 ]/3(4-1) = 15/9 = 1.67 How to summarize the correlations between these 4 variables? - use Pearson r (bivariately) to obtain a correlation matrix? - no, because a) we need a single measure of relationship b) r sensitive to reshuffling data in rows (thus, if we reshuffle data in rows, the row means [μ s ] and between-group variance component [σ 2 s ] would stay the same, while r would change) - solution: ICC (intraclass correlation coefficient): a) a single measure b) insensitive to reshuffling data in rows

Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire 11234μ s1 = 2.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 10.5 μ = 6.5 ICC = 0.97

ICC = 0.10 Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire μ s1 = Sire μ s2 = Sire μ s3 = μ =

Measures of phenotype Offspring 1Offspring 2Offspring 3Offspring 4Mean Sire μ s1 = 6.5 Sire 25678μ s2 = 6.5 Sire μ s3 = 6.5 μ = 6.5 ICC = 0