5-Minute Check on Activity 5-14 Click the mouse button or press the Space Bar to display the answers. Use the properties of logarithms or your calculator.

Slides:



Advertisements
Similar presentations
Warm Up Solve. 1. log16x = 2. logx1.331 = log10,000 = x 1.1 4
Advertisements

Objectives Solve exponential and logarithmic equations and equalities.
Warm-Up. One way to solve exponential equations is to use the property that if 2 powers w/ the same base are equal, then their exponents are equal. For.
8.6 Solving Exponential and Logarithmic Equations p. 501.
LOGARITHMS AND EXPONENTIAL MODELS
Solve a radical equation
CH. 8.6 Natural Logarithms. Write 2 ln 12 – ln 9 as a single natural logarithm. 2 ln 12 – ln 9 = ln 12 2 – ln 9Power Property = lnQuotient Property 12.
6.7 – Base “e” and Natural Logarithms
5.4 Exponential and Logarithmic Equations Essential Questions: How do we solve exponential and logarithmic equations?
Exponential and Logarithmic Equations
and Logarithmic Equations
7-5 Logarithmic & Exponential Equations
Take a logarithm of each side
Exponential and Logarithmic Equations Lesson 5.6.
7.6 – Solve Exponential and Log Equations
Logarithmic and Exponential Equations
Solving Equations with Logs Day 2. Solving equations with only one logarithm in it: If it is not base 10 and you can’t use your calculator, then the only.
11.3 – Exponential and Logarithmic Equations. CHANGE OF BASE FORMULA Ex: Rewrite log 5 15 using the change of base formula.
8.5 – Exponential and Logarithmic Equations. CHANGE OF BASE FORMULA where M, b, and c are positive numbers and b, c do not equal one. Ex: Rewrite log.
How do I solve exponential equations and inequalities?
5-Minute Check on Chapter 2 Transparency 3-1 Click the mouse button or press the Space Bar to display the answers. 1.Evaluate 42 - |x - 7| if x = -3 2.Find.
Solve a logarithmic equation
EXAMPLE 4 Solve a logarithmic equation Solve log (4x – 7) = log (x + 5). 5 5 log (4x – 7) = log (x + 5) x – 7 = x x – 7 = 5 3x = 12 x = 4 Write.
Elimination Using Multiplication
Natural Logarithms Section 5.6. Lehmann, Intermediate Algebra, 4ed Section 5.6Slide 2 Definition of Natural Logarithm Definition: Natural Logarithm A.
Solving Multi-Step Inequalities
Solving Open Sentences Involving Absolute Value
For b > 0 and b ≠ 1, if b x = b y, then x = y. S OLVING E XPONENTIAL E QUATIONS If two powers with the same base are equal, then their exponents must be.
5-Minute Check on Chapter 2 Transparency 3-1 Click the mouse button or press the Space Bar to display the answers. 1.Evaluate 42 - |x - 7| if x = -3 2.Find.
Transparency 2 Click the mouse button or press the Space Bar to display the answers.
Transparency 2 Click the mouse button or press the Space Bar to display the answers.
Graphing Linear Equations
Section 5.5 Solving Exponential and Logarithmic Equations Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
5-Minute Check on Chapter 2 Transparency 3-1 Click the mouse button or press the Space Bar to display the answers. 1.Evaluate 42 - |x - 7| if x = -3 2.Find.
4.7 (Green) Solve Exponential and Logarithmic Equations No School: Monday Logarithms Test: 1/21/10 (Thursday)
Property of Logarithms If x > 0, y > 0, a > 0, and a ≠ 1, then x = y if and only if log a x = log a y.
Holt McDougal Algebra Exponential and Logarithmic Equations and Inequalities Solve logarithmic equations. Objectives.
3.3 Logarithmic Functions and Their Graphs
5-Minute Check on Chapter 2 Transparency 3-1 Click the mouse button or press the Space Bar to display the answers. 1.Evaluate 42 - |x - 7| if x = -3 2.Find.
EXAMPLE 1 Solve a system graphically Graph the linear system and estimate the solution. Then check the solution algebraically. 4x + y = 8 2x – 3y = 18.
Lesson 2-1 Tangent and Velocity Problems. 5-Minute Check on Algebra Transparency 1-1 Click the mouse button or press the Space Bar to display the answers.
7.6A Solving Exponential and Logarithmic Equations Algebra II.
Holt McDougal Algebra Exponential and Logarithmic Equations and Inequalities 4-5 Exponential and Logarithmic Equations and Inequalities Holt Algebra.
Chapter 5 Lesson 3 Exponential and Logarithmic Equations.
Topic 10 : Exponential and Logarithmic Functions Solving Exponential and Logarithmic Equations.
3.4 Solving Exponential and Logarithmic Equations.
Example 1 Solve Using Equal Powers Property Solve the equation. a. 4 9x = – 4 x x23x = b. Write original equation. SOLUTION a. 4 9x 5 42.
5-Minute Check on Chapter 2 Transparency 3-1 Click the mouse button or press the Space Bar to display the answers. 1.Evaluate 42 - |x - 7| if x = -3 2.Find.
Holt McDougal Algebra 2 Exponential and Logarithmic Equations and Inequalities Solve. 1. log 16 x = 2. log x = 3 3. log10,000 = x 3 2.
For b > 0 and b  1, if b x = b y, then x = y.
8.5 – Exponential and Logarithmic Equations
Ch. 8.5 Exponential and Logarithmic Equations
Section 3.4 Solving Exponential and Logarithmic Equations
Exponential Equations
8.5 – Exponential and Logarithmic Equations
6.4 Logarithmic & Exponential Equations
Equation Solving and Modeling
Exponential and Logarithmic Equations
Chapter 6.3 Solving Quadratic Functions by Factoring Standard & Honors
5-Minute Check on Chapter 2
Logarithmic and exponential equations
Chapter 10.5 Base e and Natural Logarithms Standard & Honors
Geometry: Parallel and Perpendicular Lines
Solving Logarithmic Equations
Exponential and Logarithmic Equations
Properties of Logarithms
For b > 0 and b ≠ 1, if b x = b y, then x = y.
example 3 Carbon-14 Dating
Logarithmic and exponential equations
Definition of logarithm
Presentation transcript:

5-Minute Check on Activity 5-14 Click the mouse button or press the Space Bar to display the answers. Use the properties of logarithms or your calculator to solve the following equations: 1.14 = 3e x 2.3 = (1.04) x 3.6 = 4(2.2) x 4.5 = 1.3e 3x ln (14/3) = ln e x = x ln 3 = x ln 1.04 x = ln 3  ln 1.04 y1 = 3e x y2 = 14 x = 1.54 y1 = (1.04) x y2 = 3 x = ln 6/4 = x ln 2.2 x = ln 1.5  ln 2.2 y1 = 4(2.2) x y2 = 6 x = 0.51 ln 5/1.3 = 3x ln e x = (ln 5/1.3) / 3 y1 = 1.3e 3x y2 = 5 x = 0.45

Activity Frequency and Pitch

Objectives Solve logarithmic equations both graphically and algebraically

Vocabulary None new

Activity Raising a musical note one octave has the effect of doubling the pitch, or frequency, of the sound. However, you do not perceive the note to sound “twice as high,” as you might predict. Perceived pitch is given by the function P(f) = 2410 log (0.0016f + 1) where P is the perceived pitch in mels (units of pitch) and f is the frequency in hertz. Graph the function What is the perceived pitch, P, for an input of 10,000 hertz? P(10000) = 2410 log (0.0016f(10000) + 1) ≈ mels

Activity cont Write an equation that can be used to determine what frequency, f, gives an output of 2000 mels. Solve it using the graphing approach 2410 log (0.0016f + 1) = 2000 Y1 = 2410 log (0.0016x + 1) Y2 = 2000 Find the intersection: hertz

Algebraic Approach 1.Rewrite equation into form: log b (f(x)) = c (all positive) 2.Rewrite step 1 in exponential form: f(x) = b c 3.Solve the resulting equation from step 2 algebraically 4.Check solution in the original equation

Activity cont Solve the equation 2410 log (0.0016f + 1) = 2000 using an algebraic approach Solve the equation 2410 log (0.0016f + 1) = 2000 Divide both sides: log (0.0016f + 1) = 2000/2410 Exponential Form: (0.0016f + 1) = /2410 Solve: f = ( / ) / f ≈ 3,599 Hz

Activity cont Use an algebraic approach to determine the frequency, f, that produces a perceived pitch of 3000 mels. Solve the equation 2410 log (0.0016f + 1) = 3000 Divide both sides: log (0.0016f + 1) = 3000/2410 Exponential Form: (0.0016f + 1) = /2410 Solve: f = ( / ) / f ≈ 10, Hz

Summary and Homework Summary –Graphical Solution 1.Y1 = log function and Y2 = constant value 2.Graph and find intersection –Algebraic Solution 1.Rewrite equation into form: log b (f(x)) = c (all positive) 2.Rewrite step 1 in exponential form: f(x) = b c 3.Solve the resulting equation from step 2 algebraically 4.Check solution in the original equation Homework –pg 675 – 76; problems 1-6, 8