Dynamic Time Warping (DTW)

Slides:



Advertisements
Similar presentations
Dynamic Time Warping for Automated Cell Cycle Labelling
Advertisements

Feature Selection for Pattern Recognition J.-S. Roger Jang ( 張智星 ) CSIE Dept., National Taiwan University ( 台灣大學 資訊工程系 )
Standard Template Library Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
Shallow Copy Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
Onset Detection in Audio Music J.-S Roger Jang ( 張智星 ) MIR LabMIR Lab, CSIE Dept. National Taiwan University.
Retrieval Methods for QBSH (Query By Singing/Humming) J.-S. Roger Jang ( 張智星 ) Multimedia Information Retrieval.
Experiments with MATLAB Experiments with MATLAB Google PageRank Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University, Taiwan
Principal Component Analysis (PCA)
2015/9/131 Stress Detection J.-S. Roger Jang ( 張智星 ) MIR LabMIR Lab, CSIE Dept., National Taiwan Univ.
Dynamic Time Warping Algorithm for Gene Expression Time Series
Implementing a Speech Recognition System on a GPU using CUDA
CSIE Dept., National Taiwan Univ., Taiwan
National Taiwan University
Incorporating Dynamic Time Warping (DTW) in the SeqRec.m File Presented by: Clay McCreary, MSEE.
2015/10/221 Progressive Filtering and Its Application for Query-by-Singing/Humming J.-S. Roger Jang ( 張智星 ) Multimedia Information Retrieval Lab CS Dept.,
Demos for QBSH J.-S. Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
Singly Linked Lists Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University 1.
2016/6/41 Recent Improvement Over QBSH and AFP J.-S. Roger Jang (張智星) Multimedia Information Retrieval (MIR) Lab CSIE Dept, National Taiwan Univ.
Sorting Algorithms Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
Dynamic Programming 張智星 (Roger Jang) 多媒體資訊檢索實驗室 台灣大學 資訊工程系.
RuSSIR 2013 QBSH and AFP as Two Successful Paradigms of Music Information Retrieval Jyh-Shing Roger Jang ( 張智星 ) MIR Lab, CSIE Dept.
Sparse Vectors & Matrices Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
Binary Search Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
QBSH Corpus The QBSH corpus provided by Roger Jang [1] consists of recordings of children’s songs from students taking the course “Audio Signal Processing.
STL: Maps Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
1 Dynamic Time Warping and Minimum Distance Paths for Speech Recognition Isolated word recognition: Task : Want to build an isolated ‘word’ recogniser.
DTW for Speech Recognition J.-S. Roger Jang ( 張智星 ) MIR Lab ( 多媒體資訊檢索實驗室 ) CS, Tsing Hua Univ. ( 清華大學.
Maximum Likelihood Estimate Jyh-Shing Roger Jang ( 張智星 ) CSIE Dept, National Taiwan University.
Distance/Similarity Functions for Pattern Recognition J.-S. Roger Jang ( 張智星 ) CS Dept., Tsing Hua Univ., Taiwan
Definition of the Hidden Markov Model A Seminar Speech Recognition presentation A Seminar Speech Recognition presentation October 24 th 2002 Pieter Bas.
Discussions on Audio Melody Extraction (AME) J.-S. Roger Jang ( 張智星 ) MIR Lab, CSIE Dept. National Taiwan University.
Simulation of Stock Trading J.-S. Roger Jang ( 張智星 ) MIR Lab, CSIE Dept. National Taiwan University.
Linear Classifiers (LC) J.-S. Roger Jang ( 張智星 ) MIR Lab, CSIE Dept. National Taiwan University.
1/16 Dynamic Programming Carmine Casciato MUMT 611 Thursday March 31 st 2005.
Introduction to Music Information Retrieval (MIR)
Onset Detection, Tempo Estimation, and Beat Tracking
Search in Google's N-grams
CSIE Dept., National Taiwan Univ., Taiwan
Maximum Likelihood Estimate
Quadratic Classifiers (QC)
MIR Lab: R&D Foci and Demos ( MIR實驗室:研發重點及展示)
DP for Optimum Strategies in Games
Query by Singing/Humming via Dynamic Programming
Discrete Fourier Transform (DFT)
Singing Voice Separation via Active Noise Cancellation 使用主動式雜訊消除於歌聲分離
Gradient Descent 梯度下降法
ML for FinTech: Some Examples
Introduction to Music Information Retrieval (MIR)
Sharat.S.Chikkerur S.Anand Mantravadi Rajeev.K.Srinivasan
The Functional Space of an Activity Ashok Veeraraghavan , Rama Chellappa, Amit Roy-Chowdhury Avinash Ravichandran.
Search in OOXX Games J.-S. Roger Jang (張智星) MIR Lab, CSIE Dept.
Introduction to Music Information Retrieval (MIR)
Circularly Linked Lists and List Reversal
National Taiwan University
Endpoint Detection ( 端點偵測)
Applications of Heaps J.-S. Roger Jang (張智星) MIR Lab, CSIE Dept.
Query by Singing/Humming via Dynamic Programming
Insertion Sort Jyh-Shing Roger Jang (張智星)
Examples of Time Complexity
Scientific Computing: Closing 科學計算:結語
Gradient Descent 梯度下降法
Naive Bayes Classifiers (NBC)
Game Trees and Minimax Algorithm
Duration & Pitch Modification via WSOLA
Longest Common Subsequence (LCS)
Measuring the Similarity of Rhythmic Patterns
Sorting Algorithms Jyh-Shing Roger Jang (張智星)
Storing Game Entries in an Array
Edit Distance 張智星 (Roger Jang)
Pre and Post-Processing for Pitch Tracking
Presentation transcript:

Dynamic Time Warping (DTW) J.-S Roger Jang (張智星) jang@mirlab.org http://mirlab.org/jang MIR Lab, CSIE Dept National Taiwan University

Dynamic Time Warping Goal Method To align two sequences under certain constraints, such that the distance between these two sequences is as small as possible. Method Dynamic programming

Distance between Same-length Sequences Alignment

Distance between Different-length Sequences

Alignment Constraints: Type 1 Temporal constraints Other alignment constraints One-to-one mapping No consecutive skip-over x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6 y7 y8

Alignment Constraints: Type 2 Temporal constraints Other alignment constraints 1-to-1, 1-to-many, or many-to-1 mapping No skip-over x1 x2 x3 x4 x5 y1 y2 y3 y4 y5 y6 y7 y8

Type-1 DTW: Table Fillup x, y: input vector/matrix Local paths: 27-45-63 degrees DTW formulation: j y(j) y(j-1) x(i-1) x(i) i

Type-2 DTW: Table Fillup x, y: input vector/matrix Local paths: 0-45-90 degrees DTW formulation: j y(j) y(j-1) i x(i-1) x(i)

Local Path Constraints Type 1: 27-45-63 local paths Type 2: 0-45-90 local paths

Path Penalty for Type-1 DTW Alignment path of type-1 DTW 45-degree paths are likely to be avoided since we are minimizing the total distance. So we can add penalty for paths deviated from 45-degree.

Path Penalty for Type-2 DTW Alignment path of type-1 DTW 45-degree paths are likely to be taken since we are minimizing the total distance. So we can add penalty for paths of 45-degree.

Other Minutes about DTW Typical applications Speech recognition: MFCC matrices as inputs (where x(i) is the MFCC vector of frame i) Query by singing/humming: Pitch vectors as inputs (where x(i) is the pitch value of frame i) Abundant variants for various applications Recurrent formulas Local path constraints

Applications Applications of DTW DTW for speech recognition DTW for query by singing/humming