MOMENT GENERATING FUNCTION AND STATISTICAL DISTRIBUTIONS

Slides:



Advertisements
Similar presentations
Chapter 3 Some Special Distributions Math 6203 Fall 2009 Instructor: Ayona Chatterjee.
Advertisements

Random Variables ECE460 Spring, 2012.
Discrete Uniform Distribution
DISCRETE RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS
Random Variable A random variable X is a function that assign a real number, X(ζ), to each outcome ζ in the sample space of a random experiment. Domain.
Chapter 5 Some Important Discrete Probability Distributions
Chapter 5 Discrete Random Variables and Probability Distributions
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Basic Business Statistics.
Basic Business Statistics, 11e © 2009 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Basic Business Statistics.
ฟังก์ชั่นการแจกแจงความน่าจะเป็น แบบไม่ต่อเนื่อง Discrete Probability Distributions.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Statistics.
Chapter 2 Discrete Random Variables
Chapter 4 Discrete Random Variables and Probability Distributions
Chapter 1 Probability Theory (i) : One Random Variable
Discrete Random Variables and Probability Distributions
Probability Distributions Finite Random Variables.
Probability Distributions
Ka-fu Wong © 2003 Chap 6- 1 Dr. Ka-fu Wong ECON1003 Analysis of Economic Data.
1 Review of Probability Theory [Source: Stanford University]
Visualizing Events Contingency Tables Tree Diagrams Ace Not Ace Total Red Black Total
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Statistics.
1 Engineering Computation Part 5. 2 Some Concepts Previous to Probability RANDOM EXPERIMENT A random experiment or trial can be thought of as any activity.
A random variable that has the following pmf is said to be a binomial random variable with parameters n, p The Binomial random variable.
Class notes for ISE 201 San Jose State University
Irwin/McGraw-Hill © The McGraw-Hill Companies, Inc., 2000 LIND MASON MARCHAL 1-1 Chapter Five Discrete Probability Distributions GOALS When you have completed.
Discrete Random Variables and Probability Distributions
Chapter 21 Random Variables Discrete: Bernoulli, Binomial, Geometric, Poisson Continuous: Uniform, Exponential, Gamma, Normal Expectation & Variance, Joint.
Probability Distributions: Finite Random Variables.
Chapter 5 Several Discrete Distributions General Objectives: Discrete random variables are used in many practical applications. These random variables.
STAT 552 PROBABILITY AND STATISTICS II
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 4 and 5 Probability and Discrete Random Variables.
6- 1 Chapter Six McGraw-Hill/Irwin © 2005 The McGraw-Hill Companies, Inc., All Rights Reserved.
Chapter 1 Probability and Distributions Math 6203 Fall 2009 Instructor: Ayona Chatterjee.
Chapter 5 Discrete Random Variables and Probability Distributions ©
MOMENT GENERATING FUNCTION AND STATISTICAL DISTRIBUTIONS
Tch-prob1 Chap 3. Random Variables The outcome of a random experiment need not be a number. However, we are usually interested in some measurement or numeric.
Winter 2006EE384x1 Review of Probability Theory Review Session 1 EE384X.
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Basic Business Statistics.
MTH3003 PJJ SEM I 2015/2016.  ASSIGNMENT :25% Assignment 1 (10%) Assignment 2 (15%)  Mid exam :30% Part A (Objective) Part B (Subjective)  Final Exam:
Basic Business Statistics, 10e © 2006 Prentice-Hall, Inc.. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Basic Business Statistics.
Random Variables. A random variable X is a real valued function defined on the sample space, X : S  R. The set { s  S : X ( s )  [ a, b ] is an event}.
STA347 - week 51 More on Distribution Function The distribution of a random variable X can be determined directly from its cumulative distribution function.
Week 21 Conditional Probability Idea – have performed a chance experiment but don’t know the outcome (ω), but have some partial information (event A) about.
Expectation for multivariate distributions. Definition Let X 1, X 2, …, X n denote n jointly distributed random variable with joint density function f(x.
STA347 - week 31 Random Variables Example: We roll a fair die 6 times. Suppose we are interested in the number of 5’s in the 6 rolls. Let X = number of.
Stats Probability Theory Summary. The sample Space, S The sample space, S, for a random phenomena is the set of all possible outcomes.
1 3. Random Variables Let ( , F, P) be a probability model for an experiment, and X a function that maps every to a unique point the set of real numbers.
Exam 2: Rules Section 2.1 Bring a cheat sheet. One page 2 sides. Bring a calculator. Bring your book to use the tables in the back.
Topic 3 - Discrete distributions Basics of discrete distributions - pages Mean and variance of a discrete distribution - pages ,
Chapter 4-5 DeGroot & Schervish. Conditional Expectation/Mean Let X and Y be random variables such that the mean of Y exists and is finite. The conditional.
Chapter 3 Discrete Random Variables and Probability Distributions  Random Variables.2 - Probability Distributions for Discrete Random Variables.3.
Random Variables Learn how to characterize the pattern of the distribution of values that a random variable may have, and how to use the pattern to find.
Random Variables Example:
Discrete Random Variables. Introduction In previous lectures we established a foundation of the probability theory; we applied the probability theory.
DISCRETE PROBABILITY MODELS
Chapter 4. Random Variables - 3
Copyright © 2011 by The McGraw-Hill Companies, Inc. All rights reserved. McGraw-Hill/Irwin Chapter 5 Discrete Random Variables.
Chapter 5 Special Distributions Weiqi Luo ( 骆伟祺 ) School of Data & Computer Science Sun Yat-Sen University :
PROBABILITY AND STATISTICS WEEK 5 Onur Doğan. The Binomial Probability Distribution There are many experiments that conform either exactly or approximately.
Engineering Probability and Statistics - SE-205 -Chap 3 By S. O. Duffuaa.
Business Statistics, A First Course (4e) © 2006 Prentice-Hall, Inc. Chap 5-1 Chapter 5 Some Important Discrete Probability Distributions Business Statistics,
Chapter 4 Discrete Random Variables and Probability Distributions
3. Random Variables (Fig.3.1)
Chapter 5 Some Important Discrete Probability Distributions
Some Discrete Probability Distributions
MOMENT GENERATING FUNCTION AND STATISTICAL DISTRIBUTIONS
3. Random Variables Let (, F, P) be a probability model for an experiment, and X a function that maps every to a unique point.
Geometric Poisson Negative Binomial Gamma
Presentation transcript:

MOMENT GENERATING FUNCTION AND STATISTICAL DISTRIBUTIONS

MOMENT GENERATING FUNCTION The m.g.f. of random variable X is defined as for t Є (-h,h) for some h>0.

Properties of m.g.f. M(0)=E[1]=1 If a r.v. X has m.g.f. M(t), then Y=aX+b has a m.g.f. M.g.f does not always exists (e.g. Cauchy distribution)

Example Suppose that X has the following p.d.f. Find the m.g.f; expectation and variance.

CHARACTERISTIC FUNCTION The c.h.f. of random variable X is defined as for all real numbers t. C.h.f. always exists.

Uniqueness Theorem: If two r.v.s have mg.f.s that exist and are equal, then they have the same distribution. If two r,v,s have the same distribution, then they have the same m.g.f. (if they exist) Similar statements are true for c.h.f.

Problem It is sometimes the case that exact values of random variables (Y1, Y2, …) cannot be observed, but we can observe they are greater than some fixed value. Let Y1, Y2, … be i.i.d. r.v.s. Let a be a fixed number on real line. For i=1,2,… define,

Problem, cont. For example, if a manufacturing process produces parts with strength Yi that are tested to see if they can withstand stress a, then Xi denotes whether the strength is at least a or it is less than a. In such a case, we cannot directly observe the strength Yi of the ith part, but we can observe whether it breaks in stress test.

Problem, cont. Define p=P(Y1≥a) and q=1-p, Sn=X1+X2+…+Xn. Note that, Sn is the number of Y1, …, Yn that exceed a. Define the characteristic function, say , of a r.v. X Find Find P(Sn=j)

Other generating functions logM(t) is called cumulant generating function. is factorial moment generating function. Note: there is a simple relation between m.g.f. and f.m.g.f.

Other generating functions

Example Suppose X has the following p.m.f. Find the expectation and variance of X. Solution: Let’s use factorial m.g.f.

Example

STATISTICAL DISTRIBUTIONS

Recall Random variable: A function defined on the sample space S that associates a real number with each outcome in S.

Example Toss three coins Sample space S={s1=HHH,s2=HHT,…,s6=THT,s7=TTH,s8=TTT} Define X=number of heads: X(s1)=3,X(s6)=1,X(s8)=0 Define Y=number of tails before first head: Y(s1)=0, Y(s6)=1, Y(s8)=3

Random variables A random variable is continuous if its CDF, F(x)=P(X≤x), is continuous. A random variable is discrete if its CDF, F(x)=P(X≤x), is a step function. It is possible for a CDF to have continuous pieces and steps, but we will mostly concentrate on the previous two bullets in this course.

SOME DISCRETE PROBABILITY DISTRIBUTIONS Degenerate, Uniform, Bernoulli, Binomial, Poisson, Negative Binomial, Geometric, Hypergeometric

DEGENERATE DISTRIBUTION An rv X is degenerate at point k if The cdf:

UNIFORM DISTRIBUTION A finite number of equally spaced values are equally likely to be observed. Example: throw a fair die. P(X=1)=…=P(X=6)=1/6

BERNOULLI DISTRIBUTION A Bernoulli trial is an experiment with only two outcomes. An r.v. X has Bernoulli(p) distribution if

BERNOULLI DISTRIBUTION P(X=0)=1-p and P(X=1)=p E(X)=p

BINOMIAL DISTRIBUTION Define an rv Y by Y = total number of successes in n Bernoulli trials. There are n trials (n is finite and fixed). 2. Each trial can result in a success or a failure. 3. The probability p of success is the same for all the trials. 4. All the trials of the experiment are independent.

BINOMIAL DISTRIBUTION Example: There are black and white balls in a box. Select and record the color of the ball. Put it back and re-pick (sampling with replacement). n: number of independent and identical trials p: probability of success (e.g. probability of picking a black ball) X: number of successes in n trials

BINOMIAL THEOREM For any real numbers x and y and integer n>0

BINOMIAL DISTRIBUTION If Y~Bin(n,p), then

POISSON DISTRIBUTION The number of occurrences in a given time interval can be modeled by the Poisson distribution. e.g. number of customers to arrive in a bank between 13:00 and 13:30. Another application is in spatial distributions. e.g. modeling the distribution of bomb hits in an area or the distribution of fish in a lake.

POISSON DISTRIBUTION If X~ Poi(λ), then E(X)= Var(X)=λ

Relationship between Binomial and Poisson Let =np. The mgf of Poisson() The limiting distribution of Binomial rv is the Poisson distribution.

NEGATIVE BINOMIAL DISTRIBUTION (PASCAL OR WAITING TIME DISTRIBUTION) X: number of Bernoulli trials required to get a fixed number of failures before the r th success; or, alternatively, Y: number of Bernoulli trials required to get a fixed number of successes, such as r successes.

NEGATIVE BINOMIAL DISTRIBUTION (PASCAL OR WAITING TIME DISTRIBUTION) X~NB(r,p)

NEGATIVE BINOMIAL DISTRIBUTION An alternative form of the pdf: Note: Y=X+r

GEOMETRIC DISTRIBUTION Distribution of the number of Bernoulli trials required to get the first success. It is the special case of the Negative Binomial Distribution r=1. X~Geometric(p)

GEOMETRIC DISTRIBUTION Example: If probability is 0.001 that a light bulb will fail on any given day, then what is the probability that it will last at least 30 days? Solution:

HYPERGEOMETRIC DISTRIBUTION A box contains N marbles. Of these, M are red. Suppose that n marbles are drawn randomly from the box without replacement. The distribution of the number of red marbles, x is X~Hypergeometric(N,M,n) It is dealing with finite population.

HYPERGEOMETRIC DISTRIBUTION As N →∞, hypergeometric → binomial. In that case, sampling with or without replacement does not make much difference (especially if n/N is small).

MULTIVARIATE DISTRIBUTIONS

EXTENDED HYPERGEOMETRIC DISTRIBUTION Suppose that a collection consists of a finite number of items, N and that there are k+1 different types; M1 of type 1, M2 of type 2, and so on. Select n items at random without replacement, and let Xi be the number of items of type i that are selected. The vector X=(X1, X2,…,Xk) has an extended hypergeometric distribution and the joint pdf is

MULTINOMIAL DISTRIBUTION Let E1,E2,...,Ek,Ek+1 be k+1 mutually exclusive and exhaustive events which can occur on any trial of an experiment with P(Ei)=pi,i=1,2,…,k+1. On n independent trials of the experiment, let Xi be the number of occurrences of the event Ei. Then, the vector X=(X1, X2,…,Xk) has a multinomial distribution with joint pdf

MULTINOMIAL DISTRIBUTION Experiment involves drawing with replacement. Binomial is a special case of multinomial with k+1=2

MULTINOMIAL DISTRIBUTION Consider trinomial case for simplicity.

MULTINOMIAL DISTRIBUTION M.g.f. of X1: X1~Bin(n,p1) Similarly, X2~Bin(n,p2) But, Cov(X1,X2)≠0! Cov(X1,X2)=?

MULTINOMIAL DISTRIBUTION Example: Suppose we have a bowl with 10 marbles - 2 red marbles, 3 green marbles, and 5 blue marbles. We randomly select 4 marbles from the bowl, with replacement. What is the probability of selecting 2 green marbles and 2 blue marbles?

MULTINOMIAL DISTRIBUTION n = 4, k+1=3, nred = 0, ngreen = 2, nblue = 2 pred = 0.2, pgreen = 0.3, pblue = 0.5 P = [ n! / ( n1! * n2! * ... nk! ) ] * ( p1n1 * p2n2 * . . . * pknk ) P = [ 4! / ( 0! * 2! * 2! ) ] * [ (0.2)0 * (0.3)2 * (0.5)2 ] P = 0.135

Problem 1. a) Does a distribution exist for which the m.g.f. ? If yes, find it. If no, prove it. b) Does a distribution exist for which the m.g.f. ? If yes, find it. If no, prove it.

Problem 2. An appliance store receives a shipment of 30 microwave ovens, 5 of which are (unknown to the manager) defective. The store manager selects 4 ovens at random, without replacement, and tests to see if they are defective. Let X=number of defectives found. Calculate the pmf and cdf of X.

Problem 3. Let X denote the number of “do loops” in a Fortran program and Y the number of runs needed for a novice to debug the program. Assume that the joint density for (X,Y) is given in the following table.

Problem x/y 1 2 3 4 0.059 0.1 0.05 0.001 0.093 0.12 0.082 0.003 0.065 0.102 0.01 0.075 0.07 0.02

Problem a) Find the probability that a randomly selected program contains at most one “do loop” and requires at least two runs to debug the program. b) Find E[XY]. c) Find the marginal densities for X and Y. Find the mean and variance for both X and Y. d) Find the probability that a randomly selected program requires at least two runs to debug given that it contains exactly one “do loop”. e) Find Cov(X,Y). Find the correlation between X and Y. Based on the observed value correlation, can you claim that X and Y are not independent? Why?